Liouville type theorems involving fractional order systems

IF 2.1 2区 数学 Q1 MATHEMATICS
Qiuping Liao, Zhao Liu, Xinyue Wang
{"title":"Liouville type theorems involving fractional order systems","authors":"Qiuping Liao, Zhao Liu, Xinyue Wang","doi":"10.1515/ans-2023-0108","DOIUrl":null,"url":null,"abstract":"In this paper, let <jats:italic>α</jats:italic> be any real number between 0 and 2, we study the following semi-linear elliptic system involving the fractional Laplacian: <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mfenced close=\"\" open=\"{\"> <m:mrow> <m:mtable> <m:mtr> <m:mtd columnalign=\"left\"> <m:msup> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>α</m:mi> <m:mo>/</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>u</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>u</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mi>v</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\"0.3333em\" /> <m:mspace width=\"0.3333em\" /> <m:mspace width=\"0.3333em\" /> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:mspace width=\"1em\" /> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:msup> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>α</m:mi> <m:mo>/</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>v</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>g</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>u</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mi>v</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\"0.3333em\" /> <m:mspace width=\"0.3333em\" /> <m:mspace width=\"0.3333em\" /> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> <m:mo>.</m:mo> <m:mspace width=\"1em\" /> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> <jats:tex-math> $\\begin{cases}{\\left(-{\\Delta}\\right)}^{\\alpha /2}u\\left(x\\right)=f\\left(u\\left(x\\right),v\\left(x\\right)\\right), x\\in {\\mathbb{R}}^{n},\\quad \\hfill \\\\ {\\left(-{\\Delta}\\right)}^{\\alpha /2}v\\left(x\\right)=g\\left(u\\left(x\\right),v\\left(x\\right)\\right), x\\in {\\mathbb{R}}^{n}.\\quad \\hfill \\end{cases}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0108_ineq_001.png\" /> </jats:alternatives> </jats:inline-formula> Under nature structure conditions on <jats:italic>f</jats:italic> and <jats:italic>g</jats:italic>, we classify the positive solutions for the semi-linear elliptic system involving the fractional Laplacian by using the direct method of the moving spheres introducing by W. Chen, Y. Li, and R. Zhang (“A direct method of moving spheres on fractional order equations,” <jats:italic>J. Funct. Anal.</jats:italic>, vol. 272, pp. 4131–4157, 2017). In the half space, we establish a Liouville type theorem without any assumption of integrability by combining the direct method of moving planes and moving spheres, which improves the result proved by W. Dai, Z. Liu, and G. Lu (“Liouville type theorems for PDE and IE systems involving fractional Laplacian on a half space,” <jats:italic>Potential Anal.</jats:italic>, vol. 46, pp. 569–588, 2017).","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"5 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0108","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, let α be any real number between 0 and 2, we study the following semi-linear elliptic system involving the fractional Laplacian: ( Δ ) α / 2 u ( x ) = f ( u ( x ) , v ( x ) ) , x R n , ( Δ ) α / 2 v ( x ) = g ( u ( x ) , v ( x ) ) , x R n . $\begin{cases}{\left(-{\Delta}\right)}^{\alpha /2}u\left(x\right)=f\left(u\left(x\right),v\left(x\right)\right), x\in {\mathbb{R}}^{n},\quad \hfill \\ {\left(-{\Delta}\right)}^{\alpha /2}v\left(x\right)=g\left(u\left(x\right),v\left(x\right)\right), x\in {\mathbb{R}}^{n}.\quad \hfill \end{cases}$ Under nature structure conditions on f and g, we classify the positive solutions for the semi-linear elliptic system involving the fractional Laplacian by using the direct method of the moving spheres introducing by W. Chen, Y. Li, and R. Zhang (“A direct method of moving spheres on fractional order equations,” J. Funct. Anal., vol. 272, pp. 4131–4157, 2017). In the half space, we establish a Liouville type theorem without any assumption of integrability by combining the direct method of moving planes and moving spheres, which improves the result proved by W. Dai, Z. Liu, and G. Lu (“Liouville type theorems for PDE and IE systems involving fractional Laplacian on a half space,” Potential Anal., vol. 46, pp. 569–588, 2017).
涉及分数阶系统的柳维尔类型定理
在本文中,设 α 为 0 至 2 之间的任意实数,我们研究以下涉及分数拉普拉卡的半线性椭圆系统: ( - Δ ) α / 2 u ( x ) = f ( u ( x ) , v ( x ) ) , x∈ R n , ( - Δ ) α / 2 v ( x ) = g ( u ( x ) , v ( x ) ) , x∈ R n , ( - Δ ) α / 2 v ( x ) = g ( u ( x ) , v ( x ) ) , x∈ R n . $\begin{cases}{left(-{Delta}\right)}^{alpha /2}u\left(x\right)=f\left(u\left(x\right),v\left(x\right)\right), xin {\mathbb{R}}^{n}、\v\left(x\right)=g\left(u\left(x\right),v\left(x\right)/right), xin {\mathbb{R}}^{n}.\quad \hfill \end{cases}$ 在 f 和 g 的性质结构条件下,我们使用由 W. Chen、Y. Li 和 R. Zhang 引入的移动球直接法("A direct method of moving spheres on fractional order equations," J. Funct. Analations, vol. 272, No.Anal.》,第 272 卷,第 4131-4157 页,2017 年)。在半空间中,我们通过结合移动平面和移动球的直接方法,在没有任何可积分性假设的情况下建立了一个 Liouville 型定理,这改进了 W. Dai、Z. Liu 和 G. Lu 所证明的结果("Liouville type theorems for PDE and IE systems involving fractional Laplacian on a half space," Potential Anal.,第 46 卷,第 569-588 页,2017 年)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信