{"title":"A global Morse index theorem and applications to Jacobi fields on CMC surfaces","authors":"Wu-Hsiung Huang","doi":"10.1142/s0219199723500645","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we establish a “global” Morse index theorem. Given a hypersurface <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> of constant mean curvature, immersed in <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi><mo stretchy=\"false\">+</mo><mn>1</mn></mrow></msup></math></span><span></span>. Consider a continuous deformation of “generalized” Lipschitz domain <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>D</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo></math></span><span></span> enlarging in <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span>. The topological type of <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>D</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is permitted to change along <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>, so that <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>D</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo></math></span><span></span> has an arbitrary shape which can “reach afar” in <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span>, i.e. cover any preassigned area. The proof of the global Morse index theorem is reduced to the continuity in <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span> of the Sobolev space <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span></span> of variation functions on <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>D</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, as well as the continuity of eigenvalues of the stability operator. We devise a “detour” strategy by introducing a notion of “set-continuity” of <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>D</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo></math></span><span></span> in <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span> to yield the required continuities of <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span></span> and of eigenvalues. The global Morse index theorem thus follows and provides a structural theorem of the existence of Jacobi fields on domains in <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span>.</p>","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":"25 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Contemporary Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219199723500645","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we establish a “global” Morse index theorem. Given a hypersurface of constant mean curvature, immersed in . Consider a continuous deformation of “generalized” Lipschitz domain enlarging in . The topological type of is permitted to change along , so that has an arbitrary shape which can “reach afar” in , i.e. cover any preassigned area. The proof of the global Morse index theorem is reduced to the continuity in of the Sobolev space of variation functions on , as well as the continuity of eigenvalues of the stability operator. We devise a “detour” strategy by introducing a notion of “set-continuity” of in to yield the required continuities of and of eigenvalues. The global Morse index theorem thus follows and provides a structural theorem of the existence of Jacobi fields on domains in .
期刊介绍:
With traditional boundaries between various specialized fields of mathematics becoming less and less visible, Communications in Contemporary Mathematics (CCM) presents the forefront of research in the fields of: Algebra, Analysis, Applied Mathematics, Dynamical Systems, Geometry, Mathematical Physics, Number Theory, Partial Differential Equations and Topology, among others. It provides a forum to stimulate interactions between different areas. Both original research papers and expository articles will be published.