A global Morse index theorem and applications to Jacobi fields on CMC surfaces

IF 1.2 2区 数学 Q1 MATHEMATICS
Wu-Hsiung Huang
{"title":"A global Morse index theorem and applications to Jacobi fields on CMC surfaces","authors":"Wu-Hsiung Huang","doi":"10.1142/s0219199723500645","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we establish a “global” Morse index theorem. Given a hypersurface <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> of constant mean curvature, immersed in <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi><mo stretchy=\"false\">+</mo><mn>1</mn></mrow></msup></math></span><span></span>. Consider a continuous deformation of “generalized” Lipschitz domain <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>D</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo></math></span><span></span> enlarging in <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span>. The topological type of <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>D</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is permitted to change along <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>, so that <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>D</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo></math></span><span></span> has an arbitrary shape which can “reach afar” in <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span>, i.e. cover any preassigned area. The proof of the global Morse index theorem is reduced to the continuity in <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span> of the Sobolev space <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span></span> of variation functions on <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>D</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, as well as the continuity of eigenvalues of the stability operator. We devise a “detour” strategy by introducing a notion of “set-continuity” of <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>D</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo></math></span><span></span> in <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span> to yield the required continuities of <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span></span> and of eigenvalues. The global Morse index theorem thus follows and provides a structural theorem of the existence of Jacobi fields on domains in <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span>.</p>","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":"25 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Contemporary Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219199723500645","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we establish a “global” Morse index theorem. Given a hypersurface Mn of constant mean curvature, immersed in n+1. Consider a continuous deformation of “generalized” Lipschitz domain D(t) enlarging in Mn. The topological type of D(t) is permitted to change along t, so that D(t) has an arbitrary shape which can “reach afar” in Mn, i.e. cover any preassigned area. The proof of the global Morse index theorem is reduced to the continuity in t of the Sobolev space Ht of variation functions on D(t), as well as the continuity of eigenvalues of the stability operator. We devise a “detour” strategy by introducing a notion of “set-continuity” of D(t) in t to yield the required continuities of Ht and of eigenvalues. The global Morse index theorem thus follows and provides a structural theorem of the existence of Jacobi fields on domains in Mn.

全局莫尔斯指数定理及其在 CMC 表面雅可比场上的应用
在本文中,我们建立了一个 "全局 "莫尔斯指数定理。给定一个浸没在ℝn+1 中的恒定平均曲率超曲面 Mn。考虑在 Mn 中放大的 "广义 "Lipschitz 域 D(t) 的连续变形。允许 D(t) 的拓扑类型沿 t 变化,因此 D(t) 具有任意形状,可以在 Mn 中 "到达远处",即覆盖任何预分配区域。全局莫尔斯指数定理的证明简化为 D(t) 上变化函数的索波列夫空间 Ht 在 t 中的连续性,以及稳定算子特征值的连续性。我们设计了一种 "迂回 "策略,即引入 D(t) 在 t 中的 "集合连续性 "概念,从而得到所需的 Ht 连续性和特征值连续性。全局莫尔斯指数定理由此而来,并提供了关于 Mn 域上雅各比场存在性的结构定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
6.20%
发文量
78
审稿时长
>12 weeks
期刊介绍: With traditional boundaries between various specialized fields of mathematics becoming less and less visible, Communications in Contemporary Mathematics (CCM) presents the forefront of research in the fields of: Algebra, Analysis, Applied Mathematics, Dynamical Systems, Geometry, Mathematical Physics, Number Theory, Partial Differential Equations and Topology, among others. It provides a forum to stimulate interactions between different areas. Both original research papers and expository articles will be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信