{"title":"Algebraic versions of Hartogs’ theorem","authors":"Marcin Bilski, Jacek Bochnak, Wojciech Kucharz","doi":"10.1142/s0219199723500669","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝕂</mi></math></span><span></span> be an uncountable field of characteristic <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mn>0</mn></math></span><span></span>. For a given function <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo>:</mo><msup><mrow><mi>𝕂</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><mi>𝕂</mi></math></span><span></span>, with <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mn>2</mn></math></span><span></span>, we prove that <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi></math></span><span></span> is regular if and only if the restriction <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><msub><mrow><mo>|</mo></mrow><mrow><mi>C</mi></mrow></msub></math></span><span></span> is a regular function for every algebraic curve <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi></math></span><span></span> in <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>𝕂</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> which is either an affine line or is isomorphic to a plane curve in <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>𝕂</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span> defined by the equation <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msup><mo stretchy=\"false\">−</mo><msup><mrow><mi>Y</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>=</mo><mn>0</mn></math></span><span></span>, where <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi><mo><</mo><mi>q</mi></math></span><span></span> are prime numbers. We also show that regularity of <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi></math></span><span></span> can be verified on other algebraic curves in <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>𝕂</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> with desired geometric properties. Furthermore, if the field <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝕂</mi></math></span><span></span> is not algebraically closed, we construct a <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝕂</mi></math></span><span></span>-valued function on <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>𝕂</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> that is not regular, but all its restrictions to nonsingular algebraic curves in <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>𝕂</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> are regular functions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219199723500669","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Let be an uncountable field of characteristic . For a given function , with , we prove that is regular if and only if the restriction is a regular function for every algebraic curve in which is either an affine line or is isomorphic to a plane curve in defined by the equation , where are prime numbers. We also show that regularity of can be verified on other algebraic curves in with desired geometric properties. Furthermore, if the field is not algebraically closed, we construct a -valued function on that is not regular, but all its restrictions to nonsingular algebraic curves in are regular functions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.