{"title":"Multiscale Simulation of the Coupled Chemo-Mechanical Behavior of Porous Electrode Materials by Direct FE2 Method","authors":"Yizhou Lan, Lianhua Ma, Xiyan Du, Wei Zhou","doi":"10.1142/s175882512450039x","DOIUrl":null,"url":null,"abstract":"<p>Application of porous electrode materials has sparked significant interest as a strategy to mitigate traditional electrode mechanical failure arising from its intercalation-induced large volume change. In this work, a thermal analogy method is employed for implementing the coupled chemo-mechanical model into the finite element (FE) package ABAQUS via user subroutines UMATHT and UMAT, which is used to model the lithium (Li) diffusion and the resulting deformation of the electrode during charge-discharge cycling. This work presents a Direct FE<sup>2</sup> method for modeling the chemo-mechanically coupled behavior of porous electrode materials by establishing the macro-microscopic scale transitions through concentration and displacement DOFs and the representative volume element (RVE) volume scaling relationship. The two-scale numerical simulations can be implemented in a single computational scheme. Within the present computational framework, the Li diffusion and mechanical deformation in the porous silicon electrode during charging and discharging are easily simulated in the typical FE package. Benchmarked against the traditional direct full-field numerical computational method, the Direct FE<sup>2</sup> method is validated to present significant computational efficiency improvements through two numerical examples, the constrained expansion and the pre-compression expansion of porous electrode, by 99.27% and 94.55%, respectively, while maintaining the high precision.</p>","PeriodicalId":49186,"journal":{"name":"International Journal of Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1142/s175882512450039x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Application of porous electrode materials has sparked significant interest as a strategy to mitigate traditional electrode mechanical failure arising from its intercalation-induced large volume change. In this work, a thermal analogy method is employed for implementing the coupled chemo-mechanical model into the finite element (FE) package ABAQUS via user subroutines UMATHT and UMAT, which is used to model the lithium (Li) diffusion and the resulting deformation of the electrode during charge-discharge cycling. This work presents a Direct FE2 method for modeling the chemo-mechanically coupled behavior of porous electrode materials by establishing the macro-microscopic scale transitions through concentration and displacement DOFs and the representative volume element (RVE) volume scaling relationship. The two-scale numerical simulations can be implemented in a single computational scheme. Within the present computational framework, the Li diffusion and mechanical deformation in the porous silicon electrode during charging and discharging are easily simulated in the typical FE package. Benchmarked against the traditional direct full-field numerical computational method, the Direct FE2 method is validated to present significant computational efficiency improvements through two numerical examples, the constrained expansion and the pre-compression expansion of porous electrode, by 99.27% and 94.55%, respectively, while maintaining the high precision.
期刊介绍:
The journal has as its objective the publication and wide electronic dissemination of innovative and consequential research in applied mechanics. IJAM welcomes high-quality original research papers in all aspects of applied mechanics from contributors throughout the world. The journal aims to promote the international exchange of new knowledge and recent development information in all aspects of applied mechanics. In addition to covering the classical branches of applied mechanics, namely solid mechanics, fluid mechanics, thermodynamics, and material science, the journal also encourages contributions from newly emerging areas such as biomechanics, electromechanics, the mechanical behavior of advanced materials, nanomechanics, and many other inter-disciplinary research areas in which the concepts of applied mechanics are extensively applied and developed.