Fine-Grained Complexity of Earth Mover's Distance under Translation

Karl Bringmann, Frank Staals, Karol Węgrzycki, Geert van Wordragen
{"title":"Fine-Grained Complexity of Earth Mover's Distance under Translation","authors":"Karl Bringmann, Frank Staals, Karol Węgrzycki, Geert van Wordragen","doi":"arxiv-2403.04356","DOIUrl":null,"url":null,"abstract":"The Earth Mover's Distance is a popular similarity measure in several\nbranches of computer science. It measures the minimum total edge length of a\nperfect matching between two point sets. The Earth Mover's Distance under\nTranslation ($\\mathrm{EMDuT}$) is a translation-invariant version thereof. It\nminimizes the Earth Mover's Distance over all translations of one point set. For $\\mathrm{EMDuT}$ in $\\mathbb{R}^1$, we present an\n$\\widetilde{\\mathcal{O}}(n^2)$-time algorithm. We also show that this algorithm\nis nearly optimal by presenting a matching conditional lower bound based on the\nOrthogonal Vectors Hypothesis. For $\\mathrm{EMDuT}$ in $\\mathbb{R}^d$, we\npresent an $\\widetilde{\\mathcal{O}}(n^{2d+2})$-time algorithm for the $L_1$ and\n$L_\\infty$ metric. We show that this dependence on $d$ is asymptotically tight,\nas an $n^{o(d)}$-time algorithm for $L_1$ or $L_\\infty$ would contradict the\nExponential Time Hypothesis (ETH). Prior to our work, only approximation\nalgorithms were known for these problems.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.04356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Earth Mover's Distance is a popular similarity measure in several branches of computer science. It measures the minimum total edge length of a perfect matching between two point sets. The Earth Mover's Distance under Translation ($\mathrm{EMDuT}$) is a translation-invariant version thereof. It minimizes the Earth Mover's Distance over all translations of one point set. For $\mathrm{EMDuT}$ in $\mathbb{R}^1$, we present an $\widetilde{\mathcal{O}}(n^2)$-time algorithm. We also show that this algorithm is nearly optimal by presenting a matching conditional lower bound based on the Orthogonal Vectors Hypothesis. For $\mathrm{EMDuT}$ in $\mathbb{R}^d$, we present an $\widetilde{\mathcal{O}}(n^{2d+2})$-time algorithm for the $L_1$ and $L_\infty$ metric. We show that this dependence on $d$ is asymptotically tight, as an $n^{o(d)}$-time algorithm for $L_1$ or $L_\infty$ would contradict the Exponential Time Hypothesis (ETH). Prior to our work, only approximation algorithms were known for these problems.
平移条件下地球移动距离的精细复杂性
地球移动距离(Earth Mover's Distance)是计算机科学多个分支中的一种常用相似度量。它测量两个点集之间完全匹配的最小总边长。平移下的地球移动距离($\mathrm{EMDuT}$)是其平移不变的版本。它在一个点集的所有平移中最小化了地球移动距离。对于 $\mathbb{R}^1$ 中的 $\mathrm{EMDuT}$,我们提出了一种$widetilde{mathcal{O}}(n^2)$-time算法。我们还基于全交向量假说,提出了一个匹配的条件下限,从而证明这个算法几乎是最优的。对于$\mathbb{R}^d$中的$\mathrm{EMDuT}$,我们为$L_1$和$L_\infty$度量提出了一种$\widetilde{mathcal{O}}(n^{2d+2})$-time算法。我们证明了这种对 $d$ 的依赖是渐近紧密的,因为针对 $L_1$ 或 $L_infty$ 的 $n^{o(d)}$ 时算法将与指数时间假说(ETH)相矛盾。在我们的工作之前,人们只知道这些问题的近似计算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信