Jingyi Cao, Dongchen Li, Virginia R. Young, Bin Zou
{"title":"Short Communication: Optimal Insurance to Maximize Exponential Utility When Premium Is Computed by a Convex Functional","authors":"Jingyi Cao, Dongchen Li, Virginia R. Young, Bin Zou","doi":"10.1137/23m1601237","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Financial Mathematics, Volume 15, Issue 1, Page SC15-SC27, March 2024. <br/> Abstract. We find the optimal indemnity to maximize the expected utility of terminal wealth of a buyer of insurance whose preferences are modeled by an exponential utility. The insurance premium is computed by a convex functional. We obtain a necessary condition for the optimal indemnity; then, because the candidate optimal indemnity is given implicitly, we use that necessary condition to develop a numerical algorithm to compute it. We prove that the numerical algorithm converges to a unique indemnity that, indeed, equals the optimal policy. We also illustrate our results with numerical examples.","PeriodicalId":48880,"journal":{"name":"SIAM Journal on Financial Mathematics","volume":"31 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Financial Mathematics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1137/23m1601237","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Financial Mathematics, Volume 15, Issue 1, Page SC15-SC27, March 2024. Abstract. We find the optimal indemnity to maximize the expected utility of terminal wealth of a buyer of insurance whose preferences are modeled by an exponential utility. The insurance premium is computed by a convex functional. We obtain a necessary condition for the optimal indemnity; then, because the candidate optimal indemnity is given implicitly, we use that necessary condition to develop a numerical algorithm to compute it. We prove that the numerical algorithm converges to a unique indemnity that, indeed, equals the optimal policy. We also illustrate our results with numerical examples.
期刊介绍:
SIAM Journal on Financial Mathematics (SIFIN) addresses theoretical developments in financial mathematics as well as breakthroughs in the computational challenges they encompass. The journal provides a common platform for scholars interested in the mathematical theory of finance as well as practitioners interested in rigorous treatments of the scientific computational issues related to implementation. On the theoretical side, the journal publishes articles with demonstrable mathematical developments motivated by models of modern finance. On the computational side, it publishes articles introducing new methods and algorithms representing significant (as opposed to incremental) improvements on the existing state of affairs of modern numerical implementations of applied financial mathematics.