Least Energy Sign-Changing Solution for N-Kirchhoff Problems with Logarithmic and Exponential Nonlinearities

IF 0.7 4区 数学 Q2 MATHEMATICS
Ting Huang, Yan-Ying Shang
{"title":"Least Energy Sign-Changing Solution for N-Kirchhoff Problems with Logarithmic and Exponential Nonlinearities","authors":"Ting Huang, Yan-Ying Shang","doi":"10.1007/s11785-024-01495-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we are concerned with the existence of least energy sign-changing solutions for the following <i>N</i>-Laplacian Kirchhoff-type problem with logarithmic and exponential nonlinearities: </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{ll} -\\left( a+b \\int _{\\Omega }|\\nabla u|^{N} d x\\right) \\Delta _{N} u=|u|^{p-2} u \\ln |u|^{2}+\\lambda f(u), &amp;{} \\text{ in } \\Omega , \\\\ u=0, &amp;{} \\text{ on } \\partial \\Omega , \\end{array}\\right. \\end{aligned}$$</span><p>where <i>f</i>(<i>t</i>) behaves like <span>\\(\\ exp\\left( {\\alpha |t|^{{\\frac{N}{{N - 1}}}} } \\right) \\)</span>. Combining constrained variational method, topological degree theory and quantitative deformation lemma, we prove that the problem possesses one least energy sign-changing solution <span>\\(u_{b}\\)</span> with precisely two nodal domains. Moreover, we show that the energy of <span>\\(u_{b}\\)</span> is strictly larger than two times of the ground state energy and analyze the convergence property of <span>\\(u_{b}\\)</span> as <span>\\(b\\searrow 0\\)</span>.</p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01495-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we are concerned with the existence of least energy sign-changing solutions for the following N-Laplacian Kirchhoff-type problem with logarithmic and exponential nonlinearities:

$$\begin{aligned} \left\{ \begin{array}{ll} -\left( a+b \int _{\Omega }|\nabla u|^{N} d x\right) \Delta _{N} u=|u|^{p-2} u \ln |u|^{2}+\lambda f(u), &{} \text{ in } \Omega , \\ u=0, &{} \text{ on } \partial \Omega , \end{array}\right. \end{aligned}$$

where f(t) behaves like \(\ exp\left( {\alpha |t|^{{\frac{N}{{N - 1}}}} } \right) \). Combining constrained variational method, topological degree theory and quantitative deformation lemma, we prove that the problem possesses one least energy sign-changing solution \(u_{b}\) with precisely two nodal domains. Moreover, we show that the energy of \(u_{b}\) is strictly larger than two times of the ground state energy and analyze the convergence property of \(u_{b}\) as \(b\searrow 0\).

具有对数和指数非线性的 N-Kirchhoff 问题的最小能量符号变化解法
在本文中,我们关注以下具有对数和指数非线性的 N-拉普拉斯基尔霍夫型问题的最小能量符号变化解的存在: $$\begin{aligned}\left\{ \begin{array}{ll} -\left( a+b \int _{Omega }|\nabla u|^{N} d x\right) \Delta _{N} u=|u|^{p-2} u \ln |u|^{2}+\lambda f(u), &{}\text{ in }\u=0, &{}\text{ on }\部分 \Omega , \end{array}\right.\end{aligned}$where f(t) behaves like \(\ exp\left( {\alpha |t|^{\frac{N}{{N - 1}}}} } \right) \)。结合约束变分法、拓扑度理论和定量变形lemma,我们证明该问题有一个能量最小的符号变化解\(u_{b}\),恰好有两个结点域。此外,我们还证明了 \(u_{b}\) 的能量严格大于基态能量的两倍,并分析了 \(u_{b}\) 作为 \(b\searrow 0\) 的收敛特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信