An Analytical Method for Determining the Conditions of Long-Term Orbital Existence of Technogenic Nanoparticles Injected into Near-Earth Space in a High Circular Orbit
{"title":"An Analytical Method for Determining the Conditions of Long-Term Orbital Existence of Technogenic Nanoparticles Injected into Near-Earth Space in a High Circular Orbit","authors":"","doi":"10.1134/s0010952523700806","DOIUrl":null,"url":null,"abstract":"<span> <h3>Abstract</h3> <p>The paper analytically determines, based on the use of “drift” equations of motion, the conditions for the implementation of two possible modes of long-term orbital existence of technogenic nanoparticles injected into near-Earth space in a high circular orbit in the ring current region and not going beyond this region during orbital motion. It is shown that, in each of these modes, the leading center of the nanoparticle, without reaching the dense layers of the atmosphere, in the leading plane periodically oscillates along the segment of the geomagnetic field line between the “mirror points,” which, in one mode, are located in the northern and southern hemispheres, and, in the other, in the same hemisphere as the point injection. The correctness of the formulated conditions is confirmed by comparison with the results of the corresponding numerical experiments.</p> </span>","PeriodicalId":56319,"journal":{"name":"Cosmic Research","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cosmic Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s0010952523700806","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The paper analytically determines, based on the use of “drift” equations of motion, the conditions for the implementation of two possible modes of long-term orbital existence of technogenic nanoparticles injected into near-Earth space in a high circular orbit in the ring current region and not going beyond this region during orbital motion. It is shown that, in each of these modes, the leading center of the nanoparticle, without reaching the dense layers of the atmosphere, in the leading plane periodically oscillates along the segment of the geomagnetic field line between the “mirror points,” which, in one mode, are located in the northern and southern hemispheres, and, in the other, in the same hemisphere as the point injection. The correctness of the formulated conditions is confirmed by comparison with the results of the corresponding numerical experiments.
期刊介绍:
Cosmic Research publishes scientific papers covering all subjects of space science and technology, including the following: ballistics, flight dynamics of the Earth’s artificial satellites and automatic interplanetary stations; problems of transatmospheric descent; design and structure of spacecraft and scientific research instrumentation; life support systems and radiation safety of manned spacecrafts; exploration of the Earth from Space; exploration of near space; exploration of the Sun, planets, secondary planets, and interplanetary medium; exploration of stars, nebulae, interstellar medium, galaxies, and quasars from spacecraft; and various astrophysical problems related to space exploration. A chronicle of scientific events and other notices concerning the main topics of the journal are also presented.