Cylindrically Symmetric Diffusion Model for Relativistic Heavy-Ion Collisions

IF 2.2 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Johannes Hoelck, Georg Wolschin
{"title":"Cylindrically Symmetric Diffusion Model for Relativistic Heavy-Ion Collisions","authors":"Johannes Hoelck,&nbsp;Georg Wolschin","doi":"10.1002/andp.202300307","DOIUrl":null,"url":null,"abstract":"<p>A relativistic diffusion model with cylindrical symmetry, which propagates an initial state based on quantum chromodynamics in time toward a thermal equilibrium limit, is derived from nonequilibrium–statistical considerations: adapting an existing framework for Markovian stochastic processes representing relativistic phase-space trajectories, a Fokker–Planck equation is obtained for the time evolution of particle-number distribution functions with respect to transverse and longitudinal rapidity. The resulting partially-evolved distribution functions are transformed to transverse-momentum and pseudorapidity space, and compared with charged-hadron data from the CERN Large Hadron Collider.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"536 5","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.202300307","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202300307","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A relativistic diffusion model with cylindrical symmetry, which propagates an initial state based on quantum chromodynamics in time toward a thermal equilibrium limit, is derived from nonequilibrium–statistical considerations: adapting an existing framework for Markovian stochastic processes representing relativistic phase-space trajectories, a Fokker–Planck equation is obtained for the time evolution of particle-number distribution functions with respect to transverse and longitudinal rapidity. The resulting partially-evolved distribution functions are transformed to transverse-momentum and pseudorapidity space, and compared with charged-hadron data from the CERN Large Hadron Collider.

Abstract Image

Abstract Image

相对论重离子碰撞的圆柱对称扩散模型
从非平衡态统计考虑导出了一个具有圆柱对称性的相对论扩散模型,该模型根据量子色动力学将初始状态在时间上向热平衡极限传播:通过调整代表相对论相空间轨迹的马尔可夫随机过程的现有框架,获得了粒子数分布函数相对于横向和纵向快速性的时间演化的福克-普朗克方程。由此得到的部分演化分布函数被转换到横向动量和伪振幅空间,并与欧洲核子研究中心大型强子对撞机的带电质子数据进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annalen der Physik
Annalen der Physik 物理-物理:综合
CiteScore
4.50
自引率
8.30%
发文量
202
审稿时长
3 months
期刊介绍: Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信