{"title":"A NOTE ON JUDICIOUS BISECTIONS OF GRAPHS","authors":"SHUFEI WU, XIAOBEI XIONG","doi":"10.1017/s000497272400008x","DOIUrl":null,"url":null,"abstract":"Let <jats:italic>G</jats:italic> be a graph with <jats:italic>m</jats:italic> edges, minimum degree <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline1.png\" /> <jats:tex-math> $\\delta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and containing no cycle of length 4. Answering a question of Bollobás and Scott, Fan <jats:italic>et al.</jats:italic> [‘Bisections of graphs without short cycles’, <jats:italic>Combinatorics, Probability and Computing</jats:italic>27(1) (2018), 44–59] showed that if (i) <jats:italic>G</jats:italic> is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline2.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-connected, or (ii) <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline3.png\" /> <jats:tex-math> $\\delta \\ge 3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, or (iii) <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline4.png\" /> <jats:tex-math> $\\delta \\ge 2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and the girth of <jats:italic>G</jats:italic> is at least 5, then <jats:italic>G</jats:italic> admits a bisection such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline5.png\" /> <jats:tex-math> $\\max \\{e(V_1),e(V_2)\\}\\le (1/4+o(1))m$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline6.png\" /> <jats:tex-math> $e(V_i)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denotes the number of edges of <jats:italic>G</jats:italic> with both ends in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline7.png\" /> <jats:tex-math> $V_i$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline8.png\" /> <jats:tex-math> $s\\ge 2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be an integer. In this note, we prove that if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline9.png\" /> <jats:tex-math> $\\delta \\ge 2s-1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:italic>G</jats:italic> contains no <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline10.png\" /> <jats:tex-math> $K_{2,s}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> as a subgraph, then <jats:italic>G</jats:italic> admits a bisection such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline11.png\" /> <jats:tex-math> $\\max \\{e(V_1),e(V_2)\\}\\le (1/4+o(1))m$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"15 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s000497272400008x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let G be a graph with m edges, minimum degree $\delta $ and containing no cycle of length 4. Answering a question of Bollobás and Scott, Fan et al. [‘Bisections of graphs without short cycles’, Combinatorics, Probability and Computing27(1) (2018), 44–59] showed that if (i) G is $2$ -connected, or (ii) $\delta \ge 3$ , or (iii) $\delta \ge 2$ and the girth of G is at least 5, then G admits a bisection such that $\max \{e(V_1),e(V_2)\}\le (1/4+o(1))m$ , where $e(V_i)$ denotes the number of edges of G with both ends in $V_i$ . Let $s\ge 2$ be an integer. In this note, we prove that if $\delta \ge 2s-1$ and G contains no $K_{2,s}$ as a subgraph, then G admits a bisection such that $\max \{e(V_1),e(V_2)\}\le (1/4+o(1))m$ .
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society