A NOTE ON JUDICIOUS BISECTIONS OF GRAPHS

IF 0.6 4区 数学 Q3 MATHEMATICS
SHUFEI WU, XIAOBEI XIONG
{"title":"A NOTE ON JUDICIOUS BISECTIONS OF GRAPHS","authors":"SHUFEI WU, XIAOBEI XIONG","doi":"10.1017/s000497272400008x","DOIUrl":null,"url":null,"abstract":"Let <jats:italic>G</jats:italic> be a graph with <jats:italic>m</jats:italic> edges, minimum degree <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline1.png\" /> <jats:tex-math> $\\delta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and containing no cycle of length 4. Answering a question of Bollobás and Scott, Fan <jats:italic>et al.</jats:italic> [‘Bisections of graphs without short cycles’, <jats:italic>Combinatorics, Probability and Computing</jats:italic>27(1) (2018), 44–59] showed that if (i) <jats:italic>G</jats:italic> is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline2.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-connected, or (ii) <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline3.png\" /> <jats:tex-math> $\\delta \\ge 3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, or (iii) <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline4.png\" /> <jats:tex-math> $\\delta \\ge 2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and the girth of <jats:italic>G</jats:italic> is at least 5, then <jats:italic>G</jats:italic> admits a bisection such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline5.png\" /> <jats:tex-math> $\\max \\{e(V_1),e(V_2)\\}\\le (1/4+o(1))m$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline6.png\" /> <jats:tex-math> $e(V_i)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denotes the number of edges of <jats:italic>G</jats:italic> with both ends in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline7.png\" /> <jats:tex-math> $V_i$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline8.png\" /> <jats:tex-math> $s\\ge 2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be an integer. In this note, we prove that if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline9.png\" /> <jats:tex-math> $\\delta \\ge 2s-1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:italic>G</jats:italic> contains no <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline10.png\" /> <jats:tex-math> $K_{2,s}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> as a subgraph, then <jats:italic>G</jats:italic> admits a bisection such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline11.png\" /> <jats:tex-math> $\\max \\{e(V_1),e(V_2)\\}\\le (1/4+o(1))m$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"15 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s000497272400008x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a graph with m edges, minimum degree $\delta $ and containing no cycle of length 4. Answering a question of Bollobás and Scott, Fan et al. [‘Bisections of graphs without short cycles’, Combinatorics, Probability and Computing27(1) (2018), 44–59] showed that if (i) G is $2$ -connected, or (ii) $\delta \ge 3$ , or (iii) $\delta \ge 2$ and the girth of G is at least 5, then G admits a bisection such that $\max \{e(V_1),e(V_2)\}\le (1/4+o(1))m$ , where $e(V_i)$ denotes the number of edges of G with both ends in $V_i$ . Let $s\ge 2$ be an integer. In this note, we prove that if $\delta \ge 2s-1$ and G contains no $K_{2,s}$ as a subgraph, then G admits a bisection such that $\max \{e(V_1),e(V_2)\}\le (1/4+o(1))m$ .
关于图形的明智平分的说明
让 G 是一个有 m 条边、最小度为 $\delta $ 且不包含长度为 4 的循环的图。['没有短周期的图的分叉',Combinatorics, Probability and Computing27(1) (2018),44-59]表明,如果(i)G 是 2 美元连接的,或者(ii)$\delta \ge 3$ 、或者(iii) $\delta\ge 2$,并且 G 的周长至少为 5,那么 G 允许一个分段,使得 $\max {e(V_1),e(V_2)\}\le (1/4+o(1))m$ ,其中 $e(V_i)$ 表示 G 中两端都在 $V_i$ 中的边的数量。让 $s\ge 2$ 为整数。在本注中,我们将证明如果 $\delta \ge 2s-1$并且 G 不包含 $K_{2,s}$ 作为子图,那么 G 允许有一个分段,使得 $\max \{e(V_1),e(V_2)\}le (1/4+o(1))m$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信