Stability study of the compressible Mooney-Rivlin hyperelastic model

Balázs Fodor, Attila Kossa
{"title":"Stability study of the compressible Mooney-Rivlin hyperelastic model","authors":"Balázs Fodor, Attila Kossa","doi":"10.1177/03093247241233712","DOIUrl":null,"url":null,"abstract":"The unstable behavior of the isotropic, compressible Mooney-Rivlin hyperelastic model is investigated and described. The constitutive equation is parameterized with the help of the ground-state Poisson’s ratio and the dimensionless ratio of the material parameters [Formula: see text] and [Formula: see text]. Transverse stretch solutions are obtained for standard homogeneous loading modes, and the stress solutions are computed numerically for the physically permitted range of the ground-state Poisson’s ratio. We introduce a numerical technique to isolate subdomains with non-unique transverse stretch responses. Our analysis revealed some limitations of the model and allowed us to make critical observations about the strengths and weaknesses of the model. The analyses we present are essential to understand the characteristics of this widely used hyperelastic model. The novel results have important implications for the application of the isotropic, compressible Mooney-Rivlin hyperelastic material model.","PeriodicalId":517390,"journal":{"name":"The Journal of Strain Analysis for Engineering Design","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Strain Analysis for Engineering Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/03093247241233712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The unstable behavior of the isotropic, compressible Mooney-Rivlin hyperelastic model is investigated and described. The constitutive equation is parameterized with the help of the ground-state Poisson’s ratio and the dimensionless ratio of the material parameters [Formula: see text] and [Formula: see text]. Transverse stretch solutions are obtained for standard homogeneous loading modes, and the stress solutions are computed numerically for the physically permitted range of the ground-state Poisson’s ratio. We introduce a numerical technique to isolate subdomains with non-unique transverse stretch responses. Our analysis revealed some limitations of the model and allowed us to make critical observations about the strengths and weaknesses of the model. The analyses we present are essential to understand the characteristics of this widely used hyperelastic model. The novel results have important implications for the application of the isotropic, compressible Mooney-Rivlin hyperelastic material model.
可压缩穆尼-里夫林超弹性模型的稳定性研究
研究并描述了各向同性、可压缩的穆尼-里夫林超弹性模型的不稳定行为。在基态泊松比和材料参数无量纲比[公式:见正文]和[公式:见正文]的帮助下,对构成方程进行了参数化。获得了标准均质加载模式下的横向拉伸解,并对物理允许的基态泊松比范围内的应力解进行了数值计算。我们引入了一种数值技术来隔离具有非独特横向拉伸响应的子域。我们的分析揭示了模型的一些局限性,并使我们能够对模型的优缺点进行重要观察。我们所做的分析对于了解这一广泛使用的超弹性模型的特点至关重要。这些新结果对各向同性、可压缩的穆尼-里夫林超弹性材料模型的应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信