Helmholtz preconditioning for the compressible Euler equations using mixed finite elements with Lorenz staggering

David Lee, Alberto Martin, Kieran Ricardo
{"title":"Helmholtz preconditioning for the compressible Euler equations using mixed finite elements with Lorenz staggering","authors":"David Lee, Alberto Martin, Kieran Ricardo","doi":"arxiv-2403.04095","DOIUrl":null,"url":null,"abstract":"Implicit solvers for atmospheric models are often accelerated via the\nsolution of a preconditioned system. For block preconditioners this typically\ninvolves the factorisation of the (approximate) Jacobian for the coupled system\ninto a Helmholtz equation for some function of the pressure. Here we present a\npreconditioner for the compressible Euler equations with a flux form\nrepresentation of the potential temperature on the Lorenz grid using mixed\nfinite elements. This formulation allows for spatial discretisations that\nconserve both energy and potential temperature variance. By introducing the dry\nthermodynamic entropy as an auxiliary variable for the solution of the\nalgebraic system, the resulting preconditioner is shown to have a similar block\nstructure to an existing preconditioner for the material form transport of\npotential temperature on the Charney-Phillips grid, and to be more efficient\nand stable than either this or a previous Helmholtz preconditioner for the flux\nform transport of density weighted potential temperature on the Lorenz grid for\na one dimensional thermal bubble configuration. The new preconditioner is\nfurther verified against standard two dimensional test cases in a vertical\nslice geometry.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.04095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Implicit solvers for atmospheric models are often accelerated via the solution of a preconditioned system. For block preconditioners this typically involves the factorisation of the (approximate) Jacobian for the coupled system into a Helmholtz equation for some function of the pressure. Here we present a preconditioner for the compressible Euler equations with a flux form representation of the potential temperature on the Lorenz grid using mixed finite elements. This formulation allows for spatial discretisations that conserve both energy and potential temperature variance. By introducing the dry thermodynamic entropy as an auxiliary variable for the solution of the algebraic system, the resulting preconditioner is shown to have a similar block structure to an existing preconditioner for the material form transport of potential temperature on the Charney-Phillips grid, and to be more efficient and stable than either this or a previous Helmholtz preconditioner for the flux form transport of density weighted potential temperature on the Lorenz grid for a one dimensional thermal bubble configuration. The new preconditioner is further verified against standard two dimensional test cases in a vertical slice geometry.
使用带洛伦兹交错的混合有限元对可压缩欧拉方程进行亥姆霍兹预处理
大气模型的隐式求解器通常通过预处理系统的求解来加速。对于块预处理,这通常涉及将耦合系统的(近似)雅各布因子化为压力函数的亥姆霍兹方程。在这里,我们提出了一种可压缩欧拉方程的预处理方法,使用混合有限元对洛伦兹网格上的潜在温度进行通量形式表示。这种表述方式允许同时保留能量和势温差异的空间离散。通过引入干热动力学熵作为代数系统求解的辅助变量,结果表明所产生的前置条件器与现有的用于在查尼-菲利普斯网格上进行势温物质形式传输的前置条件器具有相似的块结构,并且比该前置条件器或以前的用于在洛伦兹网格上进行一维热气泡配置的密度加权势温流动形式传输的亥姆霍兹前置条件器更有效、更稳定。在垂直切片几何中的标准二维测试案例中对新的预处理进行了进一步验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信