Residuals in space: Potential pitfalls and applications from single-institution survival analysis

IF 2.1 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Sophia D. Arabadjis, Stuart H. Sweeney
{"title":"Residuals in space: Potential pitfalls and applications from single-institution survival analysis","authors":"Sophia D. Arabadjis,&nbsp;Stuart H. Sweeney","doi":"10.1016/j.sste.2024.100646","DOIUrl":null,"url":null,"abstract":"<div><p>In practice, survival analyses appear in pharmaceutical testing, procedural recovery environments, and registry-based epidemiological studies, each reasonably assuming a known patient population. Less commonly discussed is the additional complexity introduced by non-registry and spatially-referenced data with time-dependent covariates in observational settings. In this short report we discuss residual diagnostics and interpretation from an extended Cox proportional hazard model intended to assess the effects of wildfire evacuation on risk of a secondary cardiovascular events for patients of a specific healthcare system on the California’s central coast. We describe how traditional residuals obscure important spatial patterns indicative of true geographical variation, and their impacts on model parameter estimates. We briefly discuss alternative approaches to dealing with spatial correlation in the context of Bayesian hierarchical models. Our findings/experience suggest that careful attention is needed in observational healthcare data and survival analysis contexts, but also highlights potential applications for detecting observed hospital service areas.</p></div>","PeriodicalId":46645,"journal":{"name":"Spatial and Spatio-Temporal Epidemiology","volume":"49 ","pages":"Article 100646"},"PeriodicalIF":2.1000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1877584524000133/pdfft?md5=187718cf09593783fdc63ce47348fb41&pid=1-s2.0-S1877584524000133-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial and Spatio-Temporal Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877584524000133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

In practice, survival analyses appear in pharmaceutical testing, procedural recovery environments, and registry-based epidemiological studies, each reasonably assuming a known patient population. Less commonly discussed is the additional complexity introduced by non-registry and spatially-referenced data with time-dependent covariates in observational settings. In this short report we discuss residual diagnostics and interpretation from an extended Cox proportional hazard model intended to assess the effects of wildfire evacuation on risk of a secondary cardiovascular events for patients of a specific healthcare system on the California’s central coast. We describe how traditional residuals obscure important spatial patterns indicative of true geographical variation, and their impacts on model parameter estimates. We briefly discuss alternative approaches to dealing with spatial correlation in the context of Bayesian hierarchical models. Our findings/experience suggest that careful attention is needed in observational healthcare data and survival analysis contexts, but also highlights potential applications for detecting observed hospital service areas.

空间残差:单一机构生存分析的潜在陷阱和应用
在实践中,生存分析出现在药物测试、程序恢复环境和以登记为基础的流行病学研究中,每种分析都合理地假设了一个已知的患者群体。在观察性研究中,非登记数据和空间参照数据以及随时间变化的协变量所带来的额外复杂性较少被讨论。在这篇简短的报告中,我们讨论了一个扩展的 Cox 比例危险模型的残差诊断和解释,该模型旨在评估野火疏散对加利福尼亚中部海岸特定医疗保健系统患者继发性心血管事件风险的影响。我们描述了传统残差如何掩盖了表明真实地理变化的重要空间模式,以及它们对模型参数估计的影响。我们简要讨论了在贝叶斯分层模型中处理空间相关性的其他方法。我们的研究结果/经验表明,在观察医疗数据和生存分析中需要谨慎注意,同时也强调了检测观察医院服务区的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Spatial and Spatio-Temporal Epidemiology
Spatial and Spatio-Temporal Epidemiology PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
5.10
自引率
8.80%
发文量
63
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信