Yiqi Tao, Folong Zhong, Yijia Miao, Haida Tang, Lingling Li
{"title":"The impact of barrier arrangements on the transmission of respiratory infectious diseases in nursing homes in Hong Kong","authors":"Yiqi Tao, Folong Zhong, Yijia Miao, Haida Tang, Lingling Li","doi":"10.1177/1420326x241236970","DOIUrl":null,"url":null,"abstract":"Respiratory infectious diseases have affected the health of the elderly. This study investigated the optimization of physical barriers as a low-cost design strategy to reduce the risk of infection in nursing homes for the elderly in Hong Kong, which were significantly affected by the outbreak of COVID-19. First, data on two types of rooms, single and multi-occupancy, were collected from a field investigation of typical local nursing homes. Subsequently, Computational Fluid Dynamics (CFD) simulations were employed to analyse the effects of various barrier heights on the propagation, suspension, deposition and elimination of aerosol particles in these room types, thereby evaluating infection risks. The findings reveal that in single-occupancy rooms, a barrier height of 2.1 m is effective in curtailing the spread of the virus over distances. Conversely, in multi-occupancy rooms, while a 1.8-m barrier is necessary, the rate of particle suspension is considerably higher, necessitating additional ventilation measures. Based on these findings, the study provides quantitative criteria for the implementation of physical barriers as a low-cost physical measure in nursing homes and provides recommendations for the effective prevention of respiratory infectious diseases through design modifications.","PeriodicalId":13578,"journal":{"name":"Indoor and Built Environment","volume":"32 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor and Built Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1420326x241236970","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Respiratory infectious diseases have affected the health of the elderly. This study investigated the optimization of physical barriers as a low-cost design strategy to reduce the risk of infection in nursing homes for the elderly in Hong Kong, which were significantly affected by the outbreak of COVID-19. First, data on two types of rooms, single and multi-occupancy, were collected from a field investigation of typical local nursing homes. Subsequently, Computational Fluid Dynamics (CFD) simulations were employed to analyse the effects of various barrier heights on the propagation, suspension, deposition and elimination of aerosol particles in these room types, thereby evaluating infection risks. The findings reveal that in single-occupancy rooms, a barrier height of 2.1 m is effective in curtailing the spread of the virus over distances. Conversely, in multi-occupancy rooms, while a 1.8-m barrier is necessary, the rate of particle suspension is considerably higher, necessitating additional ventilation measures. Based on these findings, the study provides quantitative criteria for the implementation of physical barriers as a low-cost physical measure in nursing homes and provides recommendations for the effective prevention of respiratory infectious diseases through design modifications.
期刊介绍:
Indoor and Built Environment publishes reports on any topic pertaining to the quality of the indoor and built environment, and how these might effect the health, performance, efficiency and comfort of persons living or working there. Topics range from urban infrastructure, design of buildings, and materials used to laboratory studies including building airflow simulations and health effects. This journal is a member of the Committee on Publication Ethics (COPE).