{"title":"Preparation and characterization of biomass-ash composites derived from incinerated sewage sludge fly ash after hydrothermal treatment","authors":"Yunqing Shi, Lingjun Wei, Hao Sun, Yiming Li, Jieyu Cui, Wanlu Zhang","doi":"10.1177/14644207241233460","DOIUrl":null,"url":null,"abstract":"With the increasing prominence of global environmental issues and the growing demand for sustainable development, biomass composites have attracted widespread attention as candidates for environmentally friendly and renewable construction materials. In this study, environmentally friendly biomass-ash composites (BACs) were fabricated using hydrothermally activated incinerated sewage sludge ash (HT-ISSA) as filler and straw powder with waste sawdust as the biomass matrix for hot pressing. An investigation was conducted into the effect of HT-ISSA on the physical properties of the composite, including the bending strength, compressive strength, and thermal conductivity. The composite prepared with 15 wt% HT-ISSA demonstrated an exceptionally high bending strength (30.60 MPa), compressive strength (44.76 MPa), and low thermal conductivity (0.2380 W/m·K). The enhanced physical properties of the BAC material are attributable to the change caused by hydrothermal treatment of the filler phase. Due to the introduction of hydrated calcium silicate, the cohesion performance of the filler significantly improved, thus leading to strong adhesion and penetration within the matrix. The obtained BAC is applicable for packaging and insulation materials, thus providing an effective solution for the economical and environmentally friendly recycling of incinerated sewage sludge ash and other bulk solid waste. Additionally, it contributes novel insights into alleviating the current shortage of forest resources.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"63 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14644207241233460","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing prominence of global environmental issues and the growing demand for sustainable development, biomass composites have attracted widespread attention as candidates for environmentally friendly and renewable construction materials. In this study, environmentally friendly biomass-ash composites (BACs) were fabricated using hydrothermally activated incinerated sewage sludge ash (HT-ISSA) as filler and straw powder with waste sawdust as the biomass matrix for hot pressing. An investigation was conducted into the effect of HT-ISSA on the physical properties of the composite, including the bending strength, compressive strength, and thermal conductivity. The composite prepared with 15 wt% HT-ISSA demonstrated an exceptionally high bending strength (30.60 MPa), compressive strength (44.76 MPa), and low thermal conductivity (0.2380 W/m·K). The enhanced physical properties of the BAC material are attributable to the change caused by hydrothermal treatment of the filler phase. Due to the introduction of hydrated calcium silicate, the cohesion performance of the filler significantly improved, thus leading to strong adhesion and penetration within the matrix. The obtained BAC is applicable for packaging and insulation materials, thus providing an effective solution for the economical and environmentally friendly recycling of incinerated sewage sludge ash and other bulk solid waste. Additionally, it contributes novel insights into alleviating the current shortage of forest resources.
期刊介绍:
The Journal of Materials: Design and Applications covers the usage and design of materials for application in an engineering context. The materials covered include metals, ceramics, and composites, as well as engineering polymers.
"The Journal of Materials Design and Applications is dedicated to publishing papers of the highest quality, in a timely fashion, covering a variety of important areas in materials technology. The Journal''s publishers have a wealth of publishing expertise and ensure that authors are given exemplary service. Every attention is given to publishing the papers as quickly as possible. The Journal has an excellent international reputation, with a corresponding international Editorial Board from a large number of different materials areas and disciplines advising the Editor." Professor Bill Banks - University of Strathclyde, UK
This journal is a member of the Committee on Publication Ethics (COPE).