Every finite graph arises as the singular set of a compact 3-D calibrated area minimizing surface

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhenhua Liu
{"title":"Every finite graph arises as the singular set of a compact 3-D calibrated area minimizing surface","authors":"Zhenhua Liu","doi":"10.1002/cpa.22194","DOIUrl":null,"url":null,"abstract":"<p>Given any (not necessarily connected) combinatorial finite graph and any compact smooth 6-manifold <span></span><math>\n <semantics>\n <msup>\n <mi>M</mi>\n <mn>6</mn>\n </msup>\n <annotation>$M^6$</annotation>\n </semantics></math> with the third Betti number <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>b</mi>\n <mn>3</mn>\n </msub>\n <mo>≠</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$b_3\\not=0$</annotation>\n </semantics></math>, we construct a calibrated 3-dimensional homologically area minimizing surface on <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> equipped in a smooth metric <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math>, so that the singular set of the surface is precisely an embedding of this finite graph. Moreover, the calibration form near the singular set is a smoothly <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mi>L</mi>\n <mo>(</mo>\n <mn>6</mn>\n <mo>,</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$GL(6,\\mathbb {R})$</annotation>\n </semantics></math> twisted special Lagrangian form. The constructions are based on some unpublished ideas of Professor Camillo De Lellis and Professor Robert Bryant.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22194","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22194","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Given any (not necessarily connected) combinatorial finite graph and any compact smooth 6-manifold M 6 $M^6$ with the third Betti number b 3 0 $b_3\not=0$ , we construct a calibrated 3-dimensional homologically area minimizing surface on M $M$ equipped in a smooth metric g $g$ , so that the singular set of the surface is precisely an embedding of this finite graph. Moreover, the calibration form near the singular set is a smoothly G L ( 6 , R ) $GL(6,\mathbb {R})$ twisted special Lagrangian form. The constructions are based on some unpublished ideas of Professor Camillo De Lellis and Professor Robert Bryant.

Abstract Image

每个有限图形都是一个紧凑的三维校准面积最小曲面的奇异集
给定任意(不一定相连的)组合有限图和任意具有第三个贝蒂数的紧凑光滑 6-manifold,我们在光滑度量中在配备上构造了一个校准的三维同源面积最小曲面,因此曲面的奇点集正是这个有限图的嵌入。此外,奇点集附近的校准形式是一种平滑扭曲的特殊拉格朗日形式。这些构造基于卡米洛-德莱利斯教授和罗伯特-布莱恩特教授一些未发表的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信