{"title":"Every finite graph arises as the singular set of a compact 3-D calibrated area minimizing surface","authors":"Zhenhua Liu","doi":"10.1002/cpa.22194","DOIUrl":null,"url":null,"abstract":"<p>Given any (not necessarily connected) combinatorial finite graph and any compact smooth 6-manifold <span></span><math>\n <semantics>\n <msup>\n <mi>M</mi>\n <mn>6</mn>\n </msup>\n <annotation>$M^6$</annotation>\n </semantics></math> with the third Betti number <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>b</mi>\n <mn>3</mn>\n </msub>\n <mo>≠</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$b_3\\not=0$</annotation>\n </semantics></math>, we construct a calibrated 3-dimensional homologically area minimizing surface on <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> equipped in a smooth metric <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math>, so that the singular set of the surface is precisely an embedding of this finite graph. Moreover, the calibration form near the singular set is a smoothly <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mi>L</mi>\n <mo>(</mo>\n <mn>6</mn>\n <mo>,</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$GL(6,\\mathbb {R})$</annotation>\n </semantics></math> twisted special Lagrangian form. The constructions are based on some unpublished ideas of Professor Camillo De Lellis and Professor Robert Bryant.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22194","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22194","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Given any (not necessarily connected) combinatorial finite graph and any compact smooth 6-manifold with the third Betti number , we construct a calibrated 3-dimensional homologically area minimizing surface on equipped in a smooth metric , so that the singular set of the surface is precisely an embedding of this finite graph. Moreover, the calibration form near the singular set is a smoothly twisted special Lagrangian form. The constructions are based on some unpublished ideas of Professor Camillo De Lellis and Professor Robert Bryant.