George Heslop-Harrison, Kazumi Nakabayashi, Ana Espinosa-Ruiz, Francesca Robertson, Robert Baines, Christopher R L Thompson, Katrin Hermann, David Alabadí, Gerhard Leubner-Metzger, Robin S B Williams
{"title":"Functional mechanism study of the allelochemical myrigalone A identifies a group of ultrapotent inhibitors of ethylene biosynthesis in plants.","authors":"George Heslop-Harrison, Kazumi Nakabayashi, Ana Espinosa-Ruiz, Francesca Robertson, Robert Baines, Christopher R L Thompson, Katrin Hermann, David Alabadí, Gerhard Leubner-Metzger, Robin S B Williams","doi":"10.1016/j.xplc.2024.100846","DOIUrl":null,"url":null,"abstract":"<p><p>Allelochemicals represent a class of natural products released by plants as root, leaf, and fruit exudates that interfere with the growth and survival of neighboring plants. Understanding how allelochemicals function to regulate plant responses may provide valuable new approaches to better control plant function. One such allelochemical, Myrigalone A (MyA) produced by Myrica gale, inhibits seed germination and seedling growth through an unknown mechanism. Here, we investigate MyA using the tractable model Dictyostelium discoideum and reveal that its activity depends on the conserved homolog of the plant ethylene synthesis protein 1-aminocyclopropane-1-carboxylic acid oxidase (ACO). Furthermore, in silico modeling predicts the direct binding of MyA to ACO within the catalytic pocket. In D. discoideum, ablation of ACO mimics the MyA-dependent developmental delay, which is partially restored by exogenous ethylene, and MyA reduces ethylene production. In Arabidopsis thaliana, MyA treatment delays seed germination, and this effect is rescued by exogenous ethylene. It also mimics the effect of established ACO inhibitors on root and hypocotyl extension, blocks ethylene-dependent root hair production, and reduces ethylene production. Finally, in silico binding analyses identify a range of highly potent ethylene inhibitors that block ethylene-dependent response and reduce ethylene production in Arabidopsis. Thus, we demonstrate a molecular mechanism by which the allelochemical MyA reduces ethylene biosynthesis and identify a range of ultrapotent inhibitors of ethylene-regulated responses.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211550/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.xplc.2024.100846","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Allelochemicals represent a class of natural products released by plants as root, leaf, and fruit exudates that interfere with the growth and survival of neighboring plants. Understanding how allelochemicals function to regulate plant responses may provide valuable new approaches to better control plant function. One such allelochemical, Myrigalone A (MyA) produced by Myrica gale, inhibits seed germination and seedling growth through an unknown mechanism. Here, we investigate MyA using the tractable model Dictyostelium discoideum and reveal that its activity depends on the conserved homolog of the plant ethylene synthesis protein 1-aminocyclopropane-1-carboxylic acid oxidase (ACO). Furthermore, in silico modeling predicts the direct binding of MyA to ACO within the catalytic pocket. In D. discoideum, ablation of ACO mimics the MyA-dependent developmental delay, which is partially restored by exogenous ethylene, and MyA reduces ethylene production. In Arabidopsis thaliana, MyA treatment delays seed germination, and this effect is rescued by exogenous ethylene. It also mimics the effect of established ACO inhibitors on root and hypocotyl extension, blocks ethylene-dependent root hair production, and reduces ethylene production. Finally, in silico binding analyses identify a range of highly potent ethylene inhibitors that block ethylene-dependent response and reduce ethylene production in Arabidopsis. Thus, we demonstrate a molecular mechanism by which the allelochemical MyA reduces ethylene biosynthesis and identify a range of ultrapotent inhibitors of ethylene-regulated responses.
期刊介绍:
Plant Communications is an open access publishing platform that supports the global plant science community. It publishes original research, review articles, technical advances, and research resources in various areas of plant sciences. The scope of topics includes evolution, ecology, physiology, biochemistry, development, reproduction, metabolism, molecular and cellular biology, genetics, genomics, environmental interactions, biotechnology, breeding of higher and lower plants, and their interactions with other organisms. The goal of Plant Communications is to provide a high-quality platform for the dissemination of plant science research.