Functional mechanism study of the allelochemical myrigalone A identifies a group of ultrapotent inhibitors of ethylene biosynthesis in plants.

IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Plant Communications Pub Date : 2024-06-10 Epub Date: 2024-03-08 DOI:10.1016/j.xplc.2024.100846
George Heslop-Harrison, Kazumi Nakabayashi, Ana Espinosa-Ruiz, Francesca Robertson, Robert Baines, Christopher R L Thompson, Katrin Hermann, David Alabadí, Gerhard Leubner-Metzger, Robin S B Williams
{"title":"Functional mechanism study of the allelochemical myrigalone A identifies a group of ultrapotent inhibitors of ethylene biosynthesis in plants.","authors":"George Heslop-Harrison, Kazumi Nakabayashi, Ana Espinosa-Ruiz, Francesca Robertson, Robert Baines, Christopher R L Thompson, Katrin Hermann, David Alabadí, Gerhard Leubner-Metzger, Robin S B Williams","doi":"10.1016/j.xplc.2024.100846","DOIUrl":null,"url":null,"abstract":"<p><p>Allelochemicals represent a class of natural products released by plants as root, leaf, and fruit exudates that interfere with the growth and survival of neighboring plants. Understanding how allelochemicals function to regulate plant responses may provide valuable new approaches to better control plant function. One such allelochemical, Myrigalone A (MyA) produced by Myrica gale, inhibits seed germination and seedling growth through an unknown mechanism. Here, we investigate MyA using the tractable model Dictyostelium discoideum and reveal that its activity depends on the conserved homolog of the plant ethylene synthesis protein 1-aminocyclopropane-1-carboxylic acid oxidase (ACO). Furthermore, in silico modeling predicts the direct binding of MyA to ACO within the catalytic pocket. In D. discoideum, ablation of ACO mimics the MyA-dependent developmental delay, which is partially restored by exogenous ethylene, and MyA reduces ethylene production. In Arabidopsis thaliana, MyA treatment delays seed germination, and this effect is rescued by exogenous ethylene. It also mimics the effect of established ACO inhibitors on root and hypocotyl extension, blocks ethylene-dependent root hair production, and reduces ethylene production. Finally, in silico binding analyses identify a range of highly potent ethylene inhibitors that block ethylene-dependent response and reduce ethylene production in Arabidopsis. Thus, we demonstrate a molecular mechanism by which the allelochemical MyA reduces ethylene biosynthesis and identify a range of ultrapotent inhibitors of ethylene-regulated responses.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211550/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.xplc.2024.100846","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Allelochemicals represent a class of natural products released by plants as root, leaf, and fruit exudates that interfere with the growth and survival of neighboring plants. Understanding how allelochemicals function to regulate plant responses may provide valuable new approaches to better control plant function. One such allelochemical, Myrigalone A (MyA) produced by Myrica gale, inhibits seed germination and seedling growth through an unknown mechanism. Here, we investigate MyA using the tractable model Dictyostelium discoideum and reveal that its activity depends on the conserved homolog of the plant ethylene synthesis protein 1-aminocyclopropane-1-carboxylic acid oxidase (ACO). Furthermore, in silico modeling predicts the direct binding of MyA to ACO within the catalytic pocket. In D. discoideum, ablation of ACO mimics the MyA-dependent developmental delay, which is partially restored by exogenous ethylene, and MyA reduces ethylene production. In Arabidopsis thaliana, MyA treatment delays seed germination, and this effect is rescued by exogenous ethylene. It also mimics the effect of established ACO inhibitors on root and hypocotyl extension, blocks ethylene-dependent root hair production, and reduces ethylene production. Finally, in silico binding analyses identify a range of highly potent ethylene inhibitors that block ethylene-dependent response and reduce ethylene production in Arabidopsis. Thus, we demonstrate a molecular mechanism by which the allelochemical MyA reduces ethylene biosynthesis and identify a range of ultrapotent inhibitors of ethylene-regulated responses.

等位化学物 myrigalone A 的功能机理研究发现了一组植物乙烯生物合成的超强抑制剂。
等位化学物质是植物以根、叶和果实渗出物形式释放的一类天然产物,可干扰邻近植物的生长和生存。了解等位化学物质是如何调节植物反应的,可以为更好地控制植物功能提供有价值的新方法。其中一种等位化学物质是大风女贞(Myrica gale)产生的Myrigalone A(MyA),它通过一种未知的机制抑制种子萌发和幼苗生长。在这里,我们利用盘基竹荪这一可控模型对 MyA 进行了研究,发现其活性取决于植物乙烯合成蛋白 1-氨基环丙烷-1-羧酸氧化酶(ACO)的保守同源物。此外,硅学建模预测 MyA 与催化袋中的 ACO 直接结合。在 Discoideum 中,消减 ACO 可模拟 MyA 依赖性发育延迟,外源乙烯可部分恢复发育延迟,MyA 可减少乙烯的产生。在拟南芥中,MyA 处理会延迟种子萌发,而外源乙烯可挽救这种效应。它还能模拟已确定的 ACO 抑制剂对根和下胚轴伸展的影响,阻断依赖乙烯的根毛生成,并减少乙烯的产生。最后,硅学结合分析确定了一系列强效乙烯抑制剂,它们能阻断拟南芥中乙烯依赖性反应并减少乙烯的产生。因此,我们证明了等位化学物质 MyA 减少乙烯生物合成的分子机制,并确定了一系列乙烯调控反应的超强抑制剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Communications
Plant Communications Agricultural and Biological Sciences-Plant Science
CiteScore
15.70
自引率
5.70%
发文量
105
审稿时长
6 weeks
期刊介绍: Plant Communications is an open access publishing platform that supports the global plant science community. It publishes original research, review articles, technical advances, and research resources in various areas of plant sciences. The scope of topics includes evolution, ecology, physiology, biochemistry, development, reproduction, metabolism, molecular and cellular biology, genetics, genomics, environmental interactions, biotechnology, breeding of higher and lower plants, and their interactions with other organisms. The goal of Plant Communications is to provide a high-quality platform for the dissemination of plant science research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信