Dataflow optimization with layer-wise design variables estimation method for enflame CNN accelerators

IF 3.4 3区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Tian Chen , Yu-an Tan , Zheng Zhang , Nan Luo , Bin Li , Yuanzhang Li
{"title":"Dataflow optimization with layer-wise design variables estimation method for enflame CNN accelerators","authors":"Tian Chen ,&nbsp;Yu-an Tan ,&nbsp;Zheng Zhang ,&nbsp;Nan Luo ,&nbsp;Bin Li ,&nbsp;Yuanzhang Li","doi":"10.1016/j.jpdc.2024.104869","DOIUrl":null,"url":null,"abstract":"<div><p>As convolution layers have been proved to be the most time-consuming operation in convolutional neural network (CNN) algorithms, many efficient CNN accelerators have been designed to boost the performance of convolution operations. Previous works on CNN acceleration usually use fixed design variables for diverse convolutional layers, which would lead to inefficient data movements and low utilization of computing resource. We tackle this issue by proposing a flexible dataflow optimization method with design variables estimation for different layers. The optimization method first narrows the design space by the priori constraints, and then enumerates all legal solutions to select the optimal design variables. We demonstrate the effectiveness of the proposed optimization method by implementing representative CNN models (VGG-16, ResNet-18 and MobileNet V1) on Enflame Technology's programmable CNN accelerator, General Computing Unit (GCU). The results indicate that our optimization can significantly enhance the throughput of the convolution layers in ResNet, VGG and MobileNet on GCU, with improvement of up to 1.84×. Furthermore, it achieves up to 2.08× of GCU utilization specifically for the convolution layers of ResNet on GCU.</p></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731524000339","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

As convolution layers have been proved to be the most time-consuming operation in convolutional neural network (CNN) algorithms, many efficient CNN accelerators have been designed to boost the performance of convolution operations. Previous works on CNN acceleration usually use fixed design variables for diverse convolutional layers, which would lead to inefficient data movements and low utilization of computing resource. We tackle this issue by proposing a flexible dataflow optimization method with design variables estimation for different layers. The optimization method first narrows the design space by the priori constraints, and then enumerates all legal solutions to select the optimal design variables. We demonstrate the effectiveness of the proposed optimization method by implementing representative CNN models (VGG-16, ResNet-18 and MobileNet V1) on Enflame Technology's programmable CNN accelerator, General Computing Unit (GCU). The results indicate that our optimization can significantly enhance the throughput of the convolution layers in ResNet, VGG and MobileNet on GCU, with improvement of up to 1.84×. Furthermore, it achieves up to 2.08× of GCU utilization specifically for the convolution layers of ResNet on GCU.

针对enflame CNN加速器的数据流优化与分层设计变量估算方法
卷积层被证明是卷积神经网络(CNN)算法中最耗时的操作,因此人们设计了许多高效的 CNN 加速器来提高卷积操作的性能。以往关于 CNN 加速的研究通常使用固定的设计变量来设计不同的卷积层,这将导致数据移动效率低下和计算资源利用率低。针对这一问题,我们提出了一种灵活的数据流优化方法,对不同层的设计变量进行估算。该优化方法首先根据先验约束条件缩小设计空间,然后枚举所有合法解决方案,选出最优设计变量。我们在恩福莱姆科技公司的可编程 CNN 加速器通用计算单元(GCU)上实现了具有代表性的 CNN 模型(VGG-16、ResNet-18 和 MobileNet V1),证明了所提出的优化方法的有效性。结果表明,我们的优化方法可以在 GCU 上显著提高 ResNet、VGG 和 MobileNet 卷积层的吞吐量,最高可提高 1.84 倍。此外,特别是 ResNet 的卷积层在 GCU 上的 GCU 利用率提高了 2.08 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Parallel and Distributed Computing
Journal of Parallel and Distributed Computing 工程技术-计算机:理论方法
CiteScore
10.30
自引率
2.60%
发文量
172
审稿时长
12 months
期刊介绍: This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing. The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信