Qiang Fan, Guang-Bo Wu, Min Chen, Lei Zheng, Hong-Jie Li, Lv-Zhu Xiang, Meng Luo
{"title":"Analysis of disulfidptosis- and cuproptosis-related LncRNAs in modulating the immune microenvironment and chemosensitivity in colon adenocarcinoma","authors":"Qiang Fan, Guang-Bo Wu, Min Chen, Lei Zheng, Hong-Jie Li, Lv-Zhu Xiang, Meng Luo","doi":"10.1049/syb2.12089","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>The main objective was to establish a prognostic model utilising long non-coding RNAs associated with disulfidptosis and cuproptosis. The data for RNA-Sequence and clinicopathological information of Colon adenocarcinoma (COAD) were acquired from The Cancer Genome Atlas. A prognostic model was constructed using Cox regression and the Least Absolute Shrinkage and Selection Operator method. The model's predictive ability was assessed through principal component analysis, Kaplan–Meier analysis, nomogram etc. The ability of identifying the rates of overall survival, infiltration of immune cells, and chemosensitivity was also explored. In vitro experiments were conducted for the validation of differential expression and function of lncRNAs. A disulfidptosis and cuproptosis-related lncRNA prognostic model was constructed. The prognostic model exhibits excellent independent predictive capability for patient outcomes. Based on the authors’ model, the high-risk group exhibited higher tumour mutation burdened worse survival. Besides, differences in immune cell infiltration and responsiveness to chemotherapeutic medications exist among patients with different risk scores. Furthermore, aberrant expressions in certain lncRNAs have been validated in HCT116 cells. In particular, FENDRR and SNHG7 could affect the proliferation and migration of colorectal cancer cells. Our study developed a novel prognostic signature, providing valuable insights into prognosis, immune infiltration, and chemosensitivity in COAD patients.</p>\n </section>\n </div>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"18 2","pages":"55-75"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.12089","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12089","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The main objective was to establish a prognostic model utilising long non-coding RNAs associated with disulfidptosis and cuproptosis. The data for RNA-Sequence and clinicopathological information of Colon adenocarcinoma (COAD) were acquired from The Cancer Genome Atlas. A prognostic model was constructed using Cox regression and the Least Absolute Shrinkage and Selection Operator method. The model's predictive ability was assessed through principal component analysis, Kaplan–Meier analysis, nomogram etc. The ability of identifying the rates of overall survival, infiltration of immune cells, and chemosensitivity was also explored. In vitro experiments were conducted for the validation of differential expression and function of lncRNAs. A disulfidptosis and cuproptosis-related lncRNA prognostic model was constructed. The prognostic model exhibits excellent independent predictive capability for patient outcomes. Based on the authors’ model, the high-risk group exhibited higher tumour mutation burdened worse survival. Besides, differences in immune cell infiltration and responsiveness to chemotherapeutic medications exist among patients with different risk scores. Furthermore, aberrant expressions in certain lncRNAs have been validated in HCT116 cells. In particular, FENDRR and SNHG7 could affect the proliferation and migration of colorectal cancer cells. Our study developed a novel prognostic signature, providing valuable insights into prognosis, immune infiltration, and chemosensitivity in COAD patients.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.