{"title":"MVAR: A Mouse Variation Registry","authors":"","doi":"10.1016/j.jmb.2024.168518","DOIUrl":null,"url":null,"abstract":"<div><p>The Mouse Variation Registry (MVAR) resource is a scalable registry of mouse single nucleotide variants and small indels and variant annotation. The resource accepts data in standard Variant Call Format (VCF) and assesses the uniqueness of the submitted variants via a canonicalization process. Novel variants are assigned a unique, persistent MVAR identifier; variants that are equivalent to an existing variant in the resource are associated with the existing identifier. Annotations for variant type, molecular consequence, impact, and genomic region in the context of specific transcripts and protein sequences are generated using Ensembl’s Variant Effect Predictor (VEP) and Jannovar. Access to the data and annotations in MVAR are supported via an Application Programming Interface (API) and web application. Researchers can search the resource by gene symbol, genomic region, variant (expressed in Human Genome Variation Society syntax), refSNP identifiers, or MVAR identifiers. Tabular search results can be filtered by variant annotations (variant type, molecular consequence, impact, variant region) and viewed according to variant distribution across mouse strains. The registry currently comprises more than 99 million canonical single nucleotide variants for 581 strains of mice. MVAR is accessible from <span><span>https://mvar.jax.org</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"436 17","pages":"Article 168518"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624001050/pdfft?md5=6a3249ee01b7788a6e26ba3e34d23bf6&pid=1-s2.0-S0022283624001050-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283624001050","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Mouse Variation Registry (MVAR) resource is a scalable registry of mouse single nucleotide variants and small indels and variant annotation. The resource accepts data in standard Variant Call Format (VCF) and assesses the uniqueness of the submitted variants via a canonicalization process. Novel variants are assigned a unique, persistent MVAR identifier; variants that are equivalent to an existing variant in the resource are associated with the existing identifier. Annotations for variant type, molecular consequence, impact, and genomic region in the context of specific transcripts and protein sequences are generated using Ensembl’s Variant Effect Predictor (VEP) and Jannovar. Access to the data and annotations in MVAR are supported via an Application Programming Interface (API) and web application. Researchers can search the resource by gene symbol, genomic region, variant (expressed in Human Genome Variation Society syntax), refSNP identifiers, or MVAR identifiers. Tabular search results can be filtered by variant annotations (variant type, molecular consequence, impact, variant region) and viewed according to variant distribution across mouse strains. The registry currently comprises more than 99 million canonical single nucleotide variants for 581 strains of mice. MVAR is accessible from https://mvar.jax.org.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.