HERMITE–HADAMARD TYPE INEQUALITIES FOR ℏ-CONVEX FUNCTION VIA FUZZY INTERVAL-VALUED FRACTIONAL q-INTEGRAL

Fractals Pub Date : 2024-03-05 DOI:10.1142/s0218348x24500427
HAIYANG CHENG, DAFANG ZHAO, MEHMET ZEKI SARIKAYA
{"title":"HERMITE–HADAMARD TYPE INEQUALITIES FOR ℏ-CONVEX FUNCTION VIA FUZZY INTERVAL-VALUED FRACTIONAL q-INTEGRAL","authors":"HAIYANG CHENG, DAFANG ZHAO, MEHMET ZEKI SARIKAYA","doi":"10.1142/s0218348x24500427","DOIUrl":null,"url":null,"abstract":"<p>Fractional <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>q</mi></math></span><span></span>-calculus is considered to be the fractional analogs of <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>q</mi></math></span><span></span>-calculus. In this paper, the fuzzy interval-valued Riemann–Liouville fractional (RLF) <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>q</mi></math></span><span></span>-integral operator is introduced. Also new fuzzy variants of Hermite–Hadamard (HH) type and HH–Fejér inequalities, involving <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℏ</mi></math></span><span></span>-convex fuzzy interval-valued functions (FIVFs), are presented by making use of the RLF <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>q</mi></math></span><span></span>-integral. The results not only generalize existing findings in the literature but also lay a solid foundation for research on inequalities concerning FIVFs. Moreover, to verify our theoretical findings, numerical examples and imperative graphical illustrations are provided.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fractional q-calculus is considered to be the fractional analogs of q-calculus. In this paper, the fuzzy interval-valued Riemann–Liouville fractional (RLF) q-integral operator is introduced. Also new fuzzy variants of Hermite–Hadamard (HH) type and HH–Fejér inequalities, involving -convex fuzzy interval-valued functions (FIVFs), are presented by making use of the RLF q-integral. The results not only generalize existing findings in the literature but also lay a solid foundation for research on inequalities concerning FIVFs. Moreover, to verify our theoretical findings, numerical examples and imperative graphical illustrations are provided.

通过 FUZZY INTERVAL-VALUED FRACTIONAL q-INTEGRAL 测量ℏ-反函数的 HERMITE-HADAMARD 类型不等式
分数 q 微积分被认为是 q 微积分的分数类比。本文引入了模糊区间值黎曼-利乌维尔分数(RLF)q-积分算子。同时,通过利用 RLF q 积分,提出了涉及 ℏ 凸模糊带区间值函数 (FIVF) 的 Hermite-Hadamard (HH) 型和 HH-Fejér 不等式的新模糊变体。这些结果不仅概括了现有文献的结论,而且为有关 FIVF 的不等式研究奠定了坚实的基础。此外,为了验证我们的理论发现,还提供了数值示例和必要的图形说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信