{"title":"Leveraging Diffusion for Strong and High Quality Face Morphing Attacks","authors":"Zander W. Blasingame;Chen Liu","doi":"10.1109/TBIOM.2024.3349857","DOIUrl":null,"url":null,"abstract":"Face morphing attacks seek to deceive a Face Recognition (FR) system by presenting a morphed image consisting of the biometric qualities from two different identities with the aim of triggering a false acceptance with one of the two identities, thereby presenting a significant threat to biometric systems. The success of a morphing attack is dependent on the ability of the morphed image to represent the biometric characteristics of both identities that were used to create the image. We present a novel morphing attack that uses a Diffusion-based architecture to improve the visual fidelity of the image and the ability of the morphing attack to represent characteristics from both identities. We demonstrate the effectiveness of the proposed attack by evaluating its visual fidelity via Fréchet Inception Distance (FID). Also, extensive experiments are conducted to measure the vulnerability of FR systems to the proposed attack. The ability of a morphing attack detector to detect the proposed attack is measured and compared against two state-of-the-art GAN-based morphing attacks along with two Landmark-based attacks. Additionally, a novel metric to measure the relative strength between different morphing attacks is introduced and evaluated.","PeriodicalId":73307,"journal":{"name":"IEEE transactions on biometrics, behavior, and identity science","volume":"6 1","pages":"118-131"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biometrics, behavior, and identity science","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10381591/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Face morphing attacks seek to deceive a Face Recognition (FR) system by presenting a morphed image consisting of the biometric qualities from two different identities with the aim of triggering a false acceptance with one of the two identities, thereby presenting a significant threat to biometric systems. The success of a morphing attack is dependent on the ability of the morphed image to represent the biometric characteristics of both identities that were used to create the image. We present a novel morphing attack that uses a Diffusion-based architecture to improve the visual fidelity of the image and the ability of the morphing attack to represent characteristics from both identities. We demonstrate the effectiveness of the proposed attack by evaluating its visual fidelity via Fréchet Inception Distance (FID). Also, extensive experiments are conducted to measure the vulnerability of FR systems to the proposed attack. The ability of a morphing attack detector to detect the proposed attack is measured and compared against two state-of-the-art GAN-based morphing attacks along with two Landmark-based attacks. Additionally, a novel metric to measure the relative strength between different morphing attacks is introduced and evaluated.