Integrated Computation Offloading, UAV Trajectory Control, Edge-Cloud and Radio Resource Allocation in SAGIN

IF 5.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Minh Dat Nguyen;Long Bao Le;André Girard
{"title":"Integrated Computation Offloading, UAV Trajectory Control, Edge-Cloud and Radio Resource Allocation in SAGIN","authors":"Minh Dat Nguyen;Long Bao Le;André Girard","doi":"10.1109/TCC.2023.3339394","DOIUrl":null,"url":null,"abstract":"In this article, we study the computation offloading problem in hybrid edge-cloud based space-air-ground integrated networks (SAGIN), where joint optimization of partial computation offloading, unmanned aerial vehicle (UAV) trajectory control, user scheduling, edge-cloud computation, radio resource allocation, and admission control is performed. Specifically, the considered SAGIN employs multiple UAV-mounted edge servers with controllable UAV trajectory and a cloud sever which can be reached by ground users (GUs) via multi-hop low-earth-orbit (LEO) satellite communications. This design aims to minimize the weighted energy consumption of the GUs and UAVs while satisfying the maximum delay constraints of underlying computation tasks. To tackle the underlying non-convex mixed integer non-linear optimization problem, we use the alternating optimization approach where we iteratively solve four sub-problems, namely user scheduling, partial offloading control and bit allocation over time slots, computation resource and bandwidth allocation, and multi-UAV trajectory control until convergence. Moreover, feasibility verification and admission control strategies are proposed to handle overloaded network scenarios. Furthermore, the successive convex approximation (SCA) method is employed to convexify and solve the non-convex computation resource and bandwidth allocation and UAV trajectory control sub-problems. Via extensive numerical studies, we illustrate the effectiveness of our proposed design compared to baselines.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"12 1","pages":"100-115"},"PeriodicalIF":5.3000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10342725/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we study the computation offloading problem in hybrid edge-cloud based space-air-ground integrated networks (SAGIN), where joint optimization of partial computation offloading, unmanned aerial vehicle (UAV) trajectory control, user scheduling, edge-cloud computation, radio resource allocation, and admission control is performed. Specifically, the considered SAGIN employs multiple UAV-mounted edge servers with controllable UAV trajectory and a cloud sever which can be reached by ground users (GUs) via multi-hop low-earth-orbit (LEO) satellite communications. This design aims to minimize the weighted energy consumption of the GUs and UAVs while satisfying the maximum delay constraints of underlying computation tasks. To tackle the underlying non-convex mixed integer non-linear optimization problem, we use the alternating optimization approach where we iteratively solve four sub-problems, namely user scheduling, partial offloading control and bit allocation over time slots, computation resource and bandwidth allocation, and multi-UAV trajectory control until convergence. Moreover, feasibility verification and admission control strategies are proposed to handle overloaded network scenarios. Furthermore, the successive convex approximation (SCA) method is employed to convexify and solve the non-convex computation resource and bandwidth allocation and UAV trajectory control sub-problems. Via extensive numerical studies, we illustrate the effectiveness of our proposed design compared to baselines.
SAGIN 中的集成计算卸载、无人机轨迹控制、边缘云和无线电资源分配
本文研究了基于边缘-云的空-空-地混合集成网络(SAGIN)中的计算卸载问题,对部分计算卸载、无人机(UAV)轨迹控制、用户调度、边缘-云计算、无线电资源分配和准入控制进行了联合优化。具体来说,所考虑的 SAGIN 采用了多个安装有可控无人飞行器轨迹的无人飞行器边缘服务器,以及地面用户(GU)可通过多跳低地球轨道(LEO)卫星通信到达的云服务器。该设计旨在最大限度地减少地面用户和无人机的加权能耗,同时满足底层计算任务的最大延迟约束。为了解决基本的非凸混合整数非线性优化问题,我们采用了交替优化方法,反复求解四个子问题,即用户调度、部分卸载控制和时隙比特分配、计算资源和带宽分配以及多无人机轨迹控制,直至收敛。此外,还提出了可行性验证和接纳控制策略,以处理网络过载情况。此外,我们还采用了连续凸近似(SCA)方法来凸化和求解非凸计算资源和带宽分配以及无人机轨迹控制子问题。通过大量的数值研究,我们说明了与基线相比,我们提出的设计方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Cloud Computing
IEEE Transactions on Cloud Computing Computer Science-Software
CiteScore
9.40
自引率
6.20%
发文量
167
期刊介绍: The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信