Semilinear tensor decompositions

K.K. Mahavadi , A.J.E. Ryba
{"title":"Semilinear tensor decompositions","authors":"K.K. Mahavadi ,&nbsp;A.J.E. Ryba","doi":"10.1016/j.jaca.2024.100013","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that a <em>kG</em>-module has a <em>semilinear tensor decomposition</em> if and only if its endomorphism algebra has a pair of mutually centralizing, unital, <em>G</em>-invariant subalgebras that are not commutative and are isomorphic to complete matrix algebras over an extension field <em>K</em> of <em>k</em>. We give an algorithm that constructs a semilinear tensor decomposition for any module whose endomorphism algebra contains appropriate invariant subalgebras.</p></div>","PeriodicalId":100767,"journal":{"name":"Journal of Computational Algebra","volume":"9 ","pages":"Article 100013"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772827724000032/pdfft?md5=3558c14d36b31fbd7274f355c1412fd1&pid=1-s2.0-S2772827724000032-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Algebra","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772827724000032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that a kG-module has a semilinear tensor decomposition if and only if its endomorphism algebra has a pair of mutually centralizing, unital, G-invariant subalgebras that are not commutative and are isomorphic to complete matrix algebras over an extension field K of k. We give an algorithm that constructs a semilinear tensor decomposition for any module whose endomorphism algebra contains appropriate invariant subalgebras.

半线性张量分解
我们证明,kG 模块具有半线性张量分解,当且仅当它的内象代数具有一对互为中心化、单存在、G 不变的子代数,这些子代数不交换,并且与 k 的扩展域 K 上的完整矩阵代数同构。我们给出了一种算法,可以为任何内象代数包含适当不变子代数的模块构造半线性张量分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信