The effect of carbon vacancy on the properties of ZrC by MEAM potentials

IF 1.9 3区 材料科学 Q4 CHEMISTRY, PHYSICAL
Yifang Ouyang , Meiling Xiong , Kuixin Lin , Yulu Zhou , Hongmei Chen , Xiaoma Tao , Qing Peng , Yong Du
{"title":"The effect of carbon vacancy on the properties of ZrC by MEAM potentials","authors":"Yifang Ouyang ,&nbsp;Meiling Xiong ,&nbsp;Kuixin Lin ,&nbsp;Yulu Zhou ,&nbsp;Hongmei Chen ,&nbsp;Xiaoma Tao ,&nbsp;Qing Peng ,&nbsp;Yong Du","doi":"10.1016/j.calphad.2024.102680","DOIUrl":null,"url":null,"abstract":"<div><p>A novel second-nearest-neighbor (2NN) modified embedded atom method (MEAM) potential for Zr–C system has been developed. The lattice constants, formation enthalpy, mechanical properties of stoichiometric ZrC have been reproduced. The melting point from the new 2NN-MEAM potential is 3436 K, which is coincident with the experimental melting point, ∼3530 K. The properties of sub-stoichiometric ZrC<sub><em>x</em></sub> with ordered or disordered carbon vacancy have also been examined with the new potential. The results for ordered sub-stoichiometric ZrC<sub><em>x</em></sub> agree well with the experimental data and/or first-principles calculations. The lattice parameter, elastic properties, thermodynamic properties change with the C/Zr ratio have been studied. The predicted relationships between the properties versus C/Zr ratio coincide with available experimental results. These results indicate the present 2NN-MEAM potential is suitable for atomic scale simulation of ZrC.</p></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"85 ","pages":"Article 102680"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0364591624000221","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A novel second-nearest-neighbor (2NN) modified embedded atom method (MEAM) potential for Zr–C system has been developed. The lattice constants, formation enthalpy, mechanical properties of stoichiometric ZrC have been reproduced. The melting point from the new 2NN-MEAM potential is 3436 K, which is coincident with the experimental melting point, ∼3530 K. The properties of sub-stoichiometric ZrCx with ordered or disordered carbon vacancy have also been examined with the new potential. The results for ordered sub-stoichiometric ZrCx agree well with the experimental data and/or first-principles calculations. The lattice parameter, elastic properties, thermodynamic properties change with the C/Zr ratio have been studied. The predicted relationships between the properties versus C/Zr ratio coincide with available experimental results. These results indicate the present 2NN-MEAM potential is suitable for atomic scale simulation of ZrC.

用 MEAM 电位分析碳空位对 ZrC 性能的影响
为 Zr-C 系统开发了一种新的第二近邻(2NN)修正嵌入原子法(MEAM)势。再现了化学计量 ZrC 的晶格常数、形成焓和力学性能。新的 2NN-MEAM 势的熔点为 3436 K,与实验熔点 ∼3530 K 相吻合。有序亚计量 ZrCx 的结果与实验数据和/或第一原理计算结果十分吻合。研究了晶格参数、弹性特性、热力学特性随 C/Zr 比率的变化。预测的特性与 C/Zr 比率之间的关系与现有的实验结果相吻合。这些结果表明,目前的 2NN-MEAM 势适用于 ZrC 的原子尺度模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
16.70%
发文量
94
审稿时长
2.5 months
期刊介绍: The design of industrial processes requires reliable thermodynamic data. CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) aims to promote computational thermodynamics through development of models to represent thermodynamic properties for various phases which permit prediction of properties of multicomponent systems from those of binary and ternary subsystems, critical assessment of data and their incorporation into self-consistent databases, development of software to optimize and derive thermodynamic parameters and the development and use of databanks for calculations to improve understanding of various industrial and technological processes. This work is disseminated through the CALPHAD journal and its annual conference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信