Sex differences in the pleiotropy of hearing difficulty with imaging-derived phenotypes: a brain-wide investigation.

IF 10.6 1区 医学 Q1 CLINICAL NEUROLOGY
Brain Pub Date : 2024-10-03 DOI:10.1093/brain/awae077
Jun He, Brenda Cabrera-Mendoza, Flavio De Angelis, Gita A Pathak, Dora Koller, Sharon G Curhan, Gary C Curhan, Adam P Mecca, Christopher H van Dyck, Renato Polimanti
{"title":"Sex differences in the pleiotropy of hearing difficulty with imaging-derived phenotypes: a brain-wide investigation.","authors":"Jun He, Brenda Cabrera-Mendoza, Flavio De Angelis, Gita A Pathak, Dora Koller, Sharon G Curhan, Gary C Curhan, Adam P Mecca, Christopher H van Dyck, Renato Polimanti","doi":"10.1093/brain/awae077","DOIUrl":null,"url":null,"abstract":"<p><p>Hearing difficulty (HD) is a major health burden in older adults. While ageing-related changes in the peripheral auditory system play an important role, genetic variation associated with brain structure and function could also be involved in HD predisposition. We analysed a large-scale HD genome-wide association study (GWAS; ntotal = 501 825, 56% females) and GWAS data related to 3935 brain imaging-derived phenotypes (IDPs) assessed in up to 33 224 individuals (52% females) using multiple MRI modalities. To investigate HD pleiotropy with brain structure and function, we conducted genetic correlation, latent causal variable, Mendelian randomization and multivariable generalized linear regression analyses. Additionally, we performed local genetic correlation and multi-trait co-localization analyses to identify genomic regions and loci implicated in the pleiotropic mechanisms shared between HD and brain IDPs. We observed a widespread genetic correlation of HD with 120 IDPs in females, 89 in males and 171 in the sex-combined analysis. The latent causal variable analysis showed that some of these genetic correlations could be due to cause-effect relationships. For seven of them, the causal effects were also confirmed by the Mendelian randomization approach: vessel volume→HD in the sex-combined analysis; hippocampus volume→HD, cerebellum grey matter volume→HD, primary visual cortex volume→HD and HD→fluctuation amplitudes of node 46 in resting-state functional MRI dimensionality 100 in females; global mean thickness→HD and HD→mean orientation dispersion index in superior corona radiata in males. The local genetic correlation analysis identified 13 pleiotropic regions between HD and these seven IDPs. We also observed a co-localization signal for the rs13026575 variant between HD, primary visual cortex volume and SPTBN1 transcriptomic regulation in females. Brain structure and function may have a role in the sex differences in HD predisposition via possible cause-effect relationships and shared regulatory mechanisms.</p>","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449129/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/brain/awae077","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hearing difficulty (HD) is a major health burden in older adults. While ageing-related changes in the peripheral auditory system play an important role, genetic variation associated with brain structure and function could also be involved in HD predisposition. We analysed a large-scale HD genome-wide association study (GWAS; ntotal = 501 825, 56% females) and GWAS data related to 3935 brain imaging-derived phenotypes (IDPs) assessed in up to 33 224 individuals (52% females) using multiple MRI modalities. To investigate HD pleiotropy with brain structure and function, we conducted genetic correlation, latent causal variable, Mendelian randomization and multivariable generalized linear regression analyses. Additionally, we performed local genetic correlation and multi-trait co-localization analyses to identify genomic regions and loci implicated in the pleiotropic mechanisms shared between HD and brain IDPs. We observed a widespread genetic correlation of HD with 120 IDPs in females, 89 in males and 171 in the sex-combined analysis. The latent causal variable analysis showed that some of these genetic correlations could be due to cause-effect relationships. For seven of them, the causal effects were also confirmed by the Mendelian randomization approach: vessel volume→HD in the sex-combined analysis; hippocampus volume→HD, cerebellum grey matter volume→HD, primary visual cortex volume→HD and HD→fluctuation amplitudes of node 46 in resting-state functional MRI dimensionality 100 in females; global mean thickness→HD and HD→mean orientation dispersion index in superior corona radiata in males. The local genetic correlation analysis identified 13 pleiotropic regions between HD and these seven IDPs. We also observed a co-localization signal for the rs13026575 variant between HD, primary visual cortex volume and SPTBN1 transcriptomic regulation in females. Brain structure and function may have a role in the sex differences in HD predisposition via possible cause-effect relationships and shared regulatory mechanisms.

听力困难与成像衍生表型的多义性性别差异:一项全脑调查。
听力障碍(HD)是老年人的主要健康负担之一。虽然外周听觉系统与衰老相关的变化起着重要作用,但与大脑结构和功能相关的遗传变异也可能与听力障碍易感性有关。我们分析了一项大规模的 HD 全基因组关联研究(GWAS;总人数 = 501,825 人,56% 为女性),以及使用多种磁共振成像模式对多达 33,224 人(52% 为女性)的 3,935 种脑成像衍生表型(IDPs)进行评估的相关 GWAS 数据。为了研究 HD 与大脑结构和功能的多效性,我们进行了遗传相关性、潜在因果变量、孟德尔随机化和多变量广义线性回归分析。此外,我们还进行了局部遗传相关性和多性状共定位分析,以确定与 HD 和大脑 IDPs 之间共同的多效应机制有关的基因组区域和基因位点。我们观察到,HD 与 120 个女性 IDPs、89 个男性 IDPs 和 171 个 IDPs 的广泛遗传相关性。潜在因果变量分析表明,其中一些遗传相关性可能是因果关系所致。有七种相关性的因果效应也得到了孟德尔随机化方法的证实:性别组合分析中的血管体积→HD;女性的海马体积→HD、小脑灰质体积→HD、初级视觉皮层体积→HD,以及静息态功能磁共振成像维度 100 中的第 46 节点的 HD→fluctuation 振幅;男性的放射状上冠状面的整体平均厚度→HD 和 HD→mean orientation dispersion index。局部遗传相关性分析在 HD 和这 7 个 IDP 之间发现了 13 个多效应区。我们还观察到rs13026575变异在女性HD、初级视觉皮层体积和SPTBN1转录组调控之间的共定位信号。通过可能的因果关系和共同的调控机制,大脑结构和功能可能在 HD 易感性的性别差异中发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain
Brain 医学-临床神经学
CiteScore
20.30
自引率
4.10%
发文量
458
审稿时长
3-6 weeks
期刊介绍: Brain, a journal focused on clinical neurology and translational neuroscience, has been publishing landmark papers since 1878. The journal aims to expand its scope by including studies that shed light on disease mechanisms and conducting innovative clinical trials for brain disorders. With a wide range of topics covered, the Editorial Board represents the international readership and diverse coverage of the journal. Accepted articles are promptly posted online, typically within a few weeks of acceptance. As of 2022, Brain holds an impressive impact factor of 14.5, according to the Journal Citation Reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信