Incorporating testing volume into estimation of effective reproduction number dynamics

Isaac H Goldstein, Jon Wakefield, Volodymyr M Minin
{"title":"Incorporating testing volume into estimation of effective reproduction number dynamics","authors":"Isaac H Goldstein, Jon Wakefield, Volodymyr M Minin","doi":"10.1093/jrsssa/qnad128","DOIUrl":null,"url":null,"abstract":"<jats:title>Abstract</jats:title> Branching process inspired models are widely used to estimate the effective reproduction number—a useful summary statistic describing an infectious disease outbreak—using counts of new cases. Case data is a real-time indicator of changes in the reproduction number, but is challenging to work with because cases fluctuate due to factors unrelated to the number of new infections. We develop a new model that incorporates the number of diagnostic tests as a surveillance model covariate. Using simulated data and data from the SARS-CoV-2 pandemic in California, we demonstrate that incorporating tests leads to improved performance over the state of the art.","PeriodicalId":517419,"journal":{"name":"The Journal of the Royal Statistical Society, Series A (Statistics in Society)","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of the Royal Statistical Society, Series A (Statistics in Society)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jrsssa/qnad128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract Branching process inspired models are widely used to estimate the effective reproduction number—a useful summary statistic describing an infectious disease outbreak—using counts of new cases. Case data is a real-time indicator of changes in the reproduction number, but is challenging to work with because cases fluctuate due to factors unrelated to the number of new infections. We develop a new model that incorporates the number of diagnostic tests as a surveillance model covariate. Using simulated data and data from the SARS-CoV-2 pandemic in California, we demonstrate that incorporating tests leads to improved performance over the state of the art.
将测试量纳入有效繁殖数量动态估算
摘要 分支过程启发模型被广泛用于估算有效繁殖数--一种描述传染病爆发的有用的汇总统计量--使用新病例计数。病例数据是繁殖数量变化的实时指标,但由于病例会受与新感染病例数量无关的因素影响而波动,因此使用病例数据具有挑战性。我们建立了一个新模型,将诊断检测的数量作为监测模型的协变量。通过使用模拟数据和加利福尼亚州 SARS-CoV-2 大流行的数据,我们证明了将检测纳入模型能提高模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信