Quantifying the migration rate of drainage divides from high-resolution topographic data

IF 2.8 2区 地球科学 Q2 GEOGRAPHY, PHYSICAL
Chao Zhou, Xibin Tan, Yiduo Liu, Feng Shi
{"title":"Quantifying the migration rate of drainage divides from high-resolution topographic data","authors":"Chao Zhou, Xibin Tan, Yiduo Liu, Feng Shi","doi":"10.5194/esurf-12-433-2024","DOIUrl":null,"url":null,"abstract":"Abstract. The lateral movement of drainage divides is co-influenced by tectonics, lithology, and climate and therefore archives a wealth of geologic and climatic information. It also has wide-ranging implications for topography, the sedimentary record, and biological evolution and thus has drawn much attention in recent years. Several methods have been proposed to determine drainage divides' migration state (direction and rate), including geochronological approaches (e.g., 10Be) and topography-based approaches (e.g., χ plots or Gilbert metrics). A key object in these methods is the channel head, which separates the hillslope and channel. However, due to the limited resolution of topography data, the required channel-head parameters in the calculation often cannot be determined accurately, and empirical values are used in the calculation, which may induce uncertainties. Here, we propose two methods to calculate the migration rate of drainage divides based on the relatively accurate channel-head parameters derived from high-resolution topographic data. We then apply the methods to an active rift shoulder (Wutai Shan) in the Shanxi Rift and a tectonically stable area (Yingwang Shan) in the Loess Plateau, to illustrate how to calculate drainage-divide migration rates. Our results show that the Wutai Shan drainage divide is migrating northwestward at a rate between 0.21 and 0.27 mm yr−1, whereas the migration rates at the Yingwang Shan are approximately zero. This study indicates that the drainage-divide stability can be determined more accurately using high-resolution topographic data. Furthermore, this study takes the cross-divide differences in the uplift rate of channel heads into account in the measurement of drainage-divide migration rate for the first time.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":"84 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/esurf-12-433-2024","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. The lateral movement of drainage divides is co-influenced by tectonics, lithology, and climate and therefore archives a wealth of geologic and climatic information. It also has wide-ranging implications for topography, the sedimentary record, and biological evolution and thus has drawn much attention in recent years. Several methods have been proposed to determine drainage divides' migration state (direction and rate), including geochronological approaches (e.g., 10Be) and topography-based approaches (e.g., χ plots or Gilbert metrics). A key object in these methods is the channel head, which separates the hillslope and channel. However, due to the limited resolution of topography data, the required channel-head parameters in the calculation often cannot be determined accurately, and empirical values are used in the calculation, which may induce uncertainties. Here, we propose two methods to calculate the migration rate of drainage divides based on the relatively accurate channel-head parameters derived from high-resolution topographic data. We then apply the methods to an active rift shoulder (Wutai Shan) in the Shanxi Rift and a tectonically stable area (Yingwang Shan) in the Loess Plateau, to illustrate how to calculate drainage-divide migration rates. Our results show that the Wutai Shan drainage divide is migrating northwestward at a rate between 0.21 and 0.27 mm yr−1, whereas the migration rates at the Yingwang Shan are approximately zero. This study indicates that the drainage-divide stability can be determined more accurately using high-resolution topographic data. Furthermore, this study takes the cross-divide differences in the uplift rate of channel heads into account in the measurement of drainage-divide migration rate for the first time.
从高分辨率地形数据中量化排水分界线的迁移率
摘要排水分水岭的横向移动受构造、岩性和气候的共同影响,因此记录了丰富的地质和气候信息。它对地形、沉积记录和生物进化也有广泛的影响,因此近年来备受关注。目前已提出了多种方法来确定排水沟的迁移状态(方向和速率),包括地质年代学方法(如 10Be)和基于地形的方法(如 χ 图或 Gilbert 指标)。这些方法中的一个关键对象是将山坡和河道分开的河道头。然而,由于地形数据的分辨率有限,计算中所需的沟头参数往往无法准确确定,计算中使用的经验值可能会带来不确定性。在此,我们提出了两种方法,根据从高分辨率地形数据中得出的相对准确的渠首参数来计算排水沟的迁移率。然后,我们将这两种方法分别应用于山西断裂的一个活动断裂肩(五台山)和黄土高原的一个构造稳定区(英旺山),以说明如何计算排水分水岭的迁移率。我们的研究结果表明,五台山流域分水岭正以 0.21 至 0.27 毫米/年的速率向西北方向迁移,而英旺山的迁移速率约为零。这项研究表明,利用高分辨率地形数据可以更准确地确定排水分界线的稳定性。此外,该研究首次在测量渠沟迁移率时考虑了渠首抬升率的跨渠沟差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth Surface Dynamics
Earth Surface Dynamics GEOGRAPHY, PHYSICALGEOSCIENCES, MULTIDISCI-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
5.40
自引率
5.90%
发文量
56
审稿时长
20 weeks
期刊介绍: Earth Surface Dynamics (ESurf) is an international scientific journal dedicated to the publication and discussion of high-quality research on the physical, chemical, and biological processes shaping Earth''s surface and their interactions on all scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信