Filip Tomek, Jiří Žák, Kryštof Verner, Josef Ježek, Scott R. Paterson
{"title":"A Complex Interplay Between Pluton Emplacement, Tectonic Deformation, and Plate Kinematics in the Cretaceous Sierra Nevada Magmatic Arc, California","authors":"Filip Tomek, Jiří Žák, Kryštof Verner, Josef Ježek, Scott R. Paterson","doi":"10.1029/2023tc007822","DOIUrl":null,"url":null,"abstract":"The relation of plate kinematics to the structural record of arc plutons and their host rocks is complex and still not fully understood. We address this issue through a combination of field mapping, structural analysis, anisotropy of magnetic susceptibility analysis, and fabric modeling in the Late Cretaceous Tuolumne Intrusive Complex, Sierra Nevada, California. A pattern of anti-clockwise rotation from ∼NNW–SSE to WNW–ESE steep foliations and change in fabric ellipsoid shape from oblate to prolate was revealed in successively emplaced Kuna Crest (∼95–92 Ma), Half Dome (∼92–89 Ma), and Cathedral Peak (∼89–84 Ma) granodiorites. The numerical model indicates that the Kuna Crest was emplaced in a transpressional setting with an angle of convergence <i>α</i> = 60–40°, whereas the Half Dome and Cathedral Peak required simultaneous vertical constriction overprinted by transpression with <i>α</i> = 35–15°. This transition, which occurred at ∼92 Ma, is accompanied by a shallowing of the lineation plunge observed also in other ∼88–84 Ma central Sierra Nevada plutons. Provided that the Cretaceous Sierra Nevada arc was constructed during overall dextral transpression, these transitions reflect significant changes in kinematics, where ∼107–92 Ma plutons were emplaced during pure shear-dominated transpression, which was followed by a transition to wrench-dominated transpression recorded in ∼92–84 Ma plutons. Such a transition in kinematics is explained as a result of progressively increasing obliquity of the relative convergence of the Farallon plate subducting beneath the North American continental margin, in agreement with most paleogeographic reconstructions.","PeriodicalId":22351,"journal":{"name":"Tectonics","volume":"2014 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tectonics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023tc007822","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The relation of plate kinematics to the structural record of arc plutons and their host rocks is complex and still not fully understood. We address this issue through a combination of field mapping, structural analysis, anisotropy of magnetic susceptibility analysis, and fabric modeling in the Late Cretaceous Tuolumne Intrusive Complex, Sierra Nevada, California. A pattern of anti-clockwise rotation from ∼NNW–SSE to WNW–ESE steep foliations and change in fabric ellipsoid shape from oblate to prolate was revealed in successively emplaced Kuna Crest (∼95–92 Ma), Half Dome (∼92–89 Ma), and Cathedral Peak (∼89–84 Ma) granodiorites. The numerical model indicates that the Kuna Crest was emplaced in a transpressional setting with an angle of convergence α = 60–40°, whereas the Half Dome and Cathedral Peak required simultaneous vertical constriction overprinted by transpression with α = 35–15°. This transition, which occurred at ∼92 Ma, is accompanied by a shallowing of the lineation plunge observed also in other ∼88–84 Ma central Sierra Nevada plutons. Provided that the Cretaceous Sierra Nevada arc was constructed during overall dextral transpression, these transitions reflect significant changes in kinematics, where ∼107–92 Ma plutons were emplaced during pure shear-dominated transpression, which was followed by a transition to wrench-dominated transpression recorded in ∼92–84 Ma plutons. Such a transition in kinematics is explained as a result of progressively increasing obliquity of the relative convergence of the Farallon plate subducting beneath the North American continental margin, in agreement with most paleogeographic reconstructions.
期刊介绍:
Tectonics (TECT) presents original scientific contributions that describe and explain the evolution, structure, and deformation of Earth¹s lithosphere. Contributions are welcome from any relevant area of research, including field, laboratory, petrological, geochemical, geochronological, geophysical, remote-sensing, and modeling studies. Multidisciplinary studies are particularly encouraged. Tectonics welcomes studies across the range of geologic time.