Bayesian Model Selection via Composite Likelihood for High-dimensional Data Integration

Pub Date : 2024-01-05 DOI:10.1002/cjs.11800
Guanlin Zhang, Yuehua Wu, Xin Gao
{"title":"Bayesian Model Selection via Composite Likelihood for High-dimensional Data Integration","authors":"Guanlin Zhang,&nbsp;Yuehua Wu,&nbsp;Xin Gao","doi":"10.1002/cjs.11800","DOIUrl":null,"url":null,"abstract":"<p>We consider data integration problems where correlated data are collected from multiple platforms. Within each platform, there are linear relationships between the responses and a collection of predictors. We extend the linear models to include random errors coming from a much wider family of sub-Gaussian and subexponential distributions. The goal is to select important predictors across multiple platforms, where the number of predictors and the number of observations both increase to infinity. We combine the marginal densities of the responses obtained from different platforms to form a composite likelihood and propose a model selection criterion based on Bayesian composite posterior probabilities. Under some regularity conditions, we prove that the model selection criterion is consistent to recover the union support of the predictors with divergent true model size.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider data integration problems where correlated data are collected from multiple platforms. Within each platform, there are linear relationships between the responses and a collection of predictors. We extend the linear models to include random errors coming from a much wider family of sub-Gaussian and subexponential distributions. The goal is to select important predictors across multiple platforms, where the number of predictors and the number of observations both increase to infinity. We combine the marginal densities of the responses obtained from different platforms to form a composite likelihood and propose a model selection criterion based on Bayesian composite posterior probabilities. Under some regularity conditions, we prove that the model selection criterion is consistent to recover the union support of the predictors with divergent true model size.

分享
查看原文
通过复合似然进行贝叶斯模型选择,实现高维数据整合
我们考虑了从多个平台收集相关数据的数据整合问题。在每个平台中,响应与一系列预测因子之间存在线性关系。我们对线性模型进行了扩展,纳入了来自更广泛的亚高斯分布和亚指数分布的随机误差。我们的目标是在多个平台上选择重要的预测因子,在这些平台上,预测因子的数量和观测数据的数量都会增加到无穷大。我们将从不同平台获得的响应边际密度结合起来,形成一个复合似然,并提出一种基于贝叶斯复合后验概率的模型选择准则。在一些规则性条件下,我们证明了模型选择准则在恢复具有不同真实模型大小的预测因子的联合支持方面是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信