A. A. Sargsyan, R. A. Mnatsakanyan, T. V. Grigoryan, A. A. Kazaryan, A. A. Petrosyan, V. V. Harutyunyan, A. O. Badalyan, N. R. Aghamalyan, V. V. Baghramyan
{"title":"Microwave–Assisted Synthesis of SiO2/ZnO Photocatalyst with Core-Shell Structure","authors":"A. A. Sargsyan, R. A. Mnatsakanyan, T. V. Grigoryan, A. A. Kazaryan, A. A. Petrosyan, V. V. Harutyunyan, A. O. Badalyan, N. R. Aghamalyan, V. V. Baghramyan","doi":"10.1134/S1068337223040163","DOIUrl":null,"url":null,"abstract":"<p>The SiO<sub>2</sub>/ZnO nanocomposite with a core-shell structure for photocatalysis from water-soluble zinc salts and sodium silicate was synthesized using the hydrothermal-microwave method. The physicochemical properties of the synthesized SiO<sub>2</sub>/ZnO were studied and its photocatalytic activity was tested. The band gaps of the heat-treated composite <span>\\(E_{{\\text{g}}}^{{{\\text{dir}}}}\\)</span> and <span>\\(E_{{\\text{g}}}^{{{\\text{indir}}}}\\)</span> are 3.35 and 3.32 eV, respectively. The photocatalytic activity of the resulting SiO<sub>2</sub>/ZnO was determined by the decomposition reaction of methylene blue under UV irradiation. The conversion of methylene blue was determined by optical method. The resulting SiO<sub>2</sub>/ZnO has high photocatalytic activity. The conducted studies showed the effectiveness of microwave synthesis of SiO<sub>2</sub>/ZnO with a core-shell structure in comparison with traditional methods.</p>","PeriodicalId":623,"journal":{"name":"Journal of Contemporary Physics (Armenian Academy of Sciences)","volume":"58 4","pages":"397 - 404"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Contemporary Physics (Armenian Academy of Sciences)","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1068337223040163","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The SiO2/ZnO nanocomposite with a core-shell structure for photocatalysis from water-soluble zinc salts and sodium silicate was synthesized using the hydrothermal-microwave method. The physicochemical properties of the synthesized SiO2/ZnO were studied and its photocatalytic activity was tested. The band gaps of the heat-treated composite \(E_{{\text{g}}}^{{{\text{dir}}}}\) and \(E_{{\text{g}}}^{{{\text{indir}}}}\) are 3.35 and 3.32 eV, respectively. The photocatalytic activity of the resulting SiO2/ZnO was determined by the decomposition reaction of methylene blue under UV irradiation. The conversion of methylene blue was determined by optical method. The resulting SiO2/ZnO has high photocatalytic activity. The conducted studies showed the effectiveness of microwave synthesis of SiO2/ZnO with a core-shell structure in comparison with traditional methods.
期刊介绍:
Journal of Contemporary Physics (Armenian Academy of Sciences) is a journal that covers all fields of modern physics. It publishes significant contributions in such areas of theoretical and applied science as interaction of elementary particles at superhigh energies, elementary particle physics, charged particle interactions with matter, physics of semiconductors and semiconductor devices, physics of condensed matter, radiophysics and radioelectronics, optics and quantum electronics, quantum size effects, nanophysics, sensorics, and superconductivity.