On a spatially inhomogeneous nonlinear Fokker–Planck equation : Cauchy problem and diffusion asymptotics

IF 1.8 1区 数学 Q1 MATHEMATICS
Francesca Anceschi, Yuzhe Zhu
{"title":"On a spatially inhomogeneous nonlinear Fokker–Planck equation : Cauchy problem and diffusion asymptotics","authors":"Francesca Anceschi, Yuzhe Zhu","doi":"10.2140/apde.2024.17.379","DOIUrl":null,"url":null,"abstract":"<p>We investigate the Cauchy problem and the diffusion asymptotics for a spatially inhomogeneous kinetic model associated to a nonlinear Fokker–Planck operator. We derive the global well-posedness result with instantaneous smoothness effect, when the initial data lies below a Maxwellian. The proof relies on the hypoelliptic analog of classical parabolic theory, as well as a positivity-spreading result based on the Harnack inequality and barrier function methods. Moreover, the scaled equation leads to the fast diffusion flow under the low field limit. The relative phi-entropy method enables us to see the connection between the overdamped dynamics of the nonlinearly coupled kinetic model and the correlated fast diffusion. The global-in-time quantitative diffusion asymptotics is then derived by combining entropic hypocoercivity, relative phi-entropy, and barrier function methods. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"22 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.379","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the Cauchy problem and the diffusion asymptotics for a spatially inhomogeneous kinetic model associated to a nonlinear Fokker–Planck operator. We derive the global well-posedness result with instantaneous smoothness effect, when the initial data lies below a Maxwellian. The proof relies on the hypoelliptic analog of classical parabolic theory, as well as a positivity-spreading result based on the Harnack inequality and barrier function methods. Moreover, the scaled equation leads to the fast diffusion flow under the low field limit. The relative phi-entropy method enables us to see the connection between the overdamped dynamics of the nonlinearly coupled kinetic model and the correlated fast diffusion. The global-in-time quantitative diffusion asymptotics is then derived by combining entropic hypocoercivity, relative phi-entropy, and barrier function methods.

关于空间非均质非线性福克-普朗克方程:考奇问题和扩散渐近学
我们研究了与非线性福克-普朗克算子相关的空间不均匀动力学模型的考奇问题和扩散渐近线。当初始数据位于麦克斯韦值以下时,我们推导出具有瞬时平滑效应的全局好求结果。证明依赖于经典抛物线理论的次抛物线类比,以及基于哈纳克不等式和障碍函数方法的正展性结果。此外,缩放方程导致了低场极限下的快速扩散流。相对phi-熵方法使我们能够看到非线性耦合动力学模型的过阻尼动力学与相关快速扩散之间的联系。然后,通过结合熵低矫顽力、相对phi-熵和壁垒函数方法,得出了全局-时间定量扩散渐近线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis & PDE
Analysis & PDE MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信