Smooth extensions for inertial manifolds of semilinear parabolic equations

IF 1.8 1区 数学 Q1 MATHEMATICS
Anna Kostianko, Sergey Zelik
{"title":"Smooth extensions for inertial manifolds of semilinear parabolic equations","authors":"Anna Kostianko, Sergey Zelik","doi":"10.2140/apde.2024.17.499","DOIUrl":null,"url":null,"abstract":"<p>The paper is devoted to a comprehensive study of smoothness of inertial manifolds (IMs) for abstract semilinear parabolic problems. It is well known that in general we cannot expect more than <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>𝜀</mi></mrow></msup></math>-regularity for such manifolds (for some positive, but small <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>𝜀</mi></math>). Nevertheless, as shown in the paper, under natural assumptions, the obstacles to the existence of a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math>-smooth inertial manifold (where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi>\n<mo>∈</mo>\n<mi>ℕ</mi></math> is any given number) can be removed by increasing the dimension and by modifying properly the nonlinearity outside of the global attractor (or even outside the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>𝜀</mi></mrow></msup></math>-smooth IM of a minimal dimension). The proof is strongly based on the Whitney extension theorem. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"18 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.499","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper is devoted to a comprehensive study of smoothness of inertial manifolds (IMs) for abstract semilinear parabolic problems. It is well known that in general we cannot expect more than C1,𝜀-regularity for such manifolds (for some positive, but small 𝜀). Nevertheless, as shown in the paper, under natural assumptions, the obstacles to the existence of a Cn-smooth inertial manifold (where n is any given number) can be removed by increasing the dimension and by modifying properly the nonlinearity outside of the global attractor (or even outside the C1,𝜀-smooth IM of a minimal dimension). The proof is strongly based on the Whitney extension theorem.

半线性抛物方程惯性流形的光滑扩展
本文致力于全面研究抽象半线性抛物线问题的惯性流形(IMs)的平滑性。众所周知,一般情况下,我们不能期望此类流形具有超过 C1,𝜀 的规则性(对于某些正值但较小的𝜀)。然而,正如本文所示,在自然假设条件下,可以通过增加维数和适当修改全局吸引子(甚至最小维数的 C1,𝜀 平滑 IM)之外的非线性来消除 Cn 平滑惯性流形(n∈ℕ 为任意给定数)存在的障碍。证明主要基于惠特尼扩展定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis & PDE
Analysis & PDE MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信