Necessary density conditions for sampling and interpolation in spectral subspaces of elliptic differential operators

IF 1.8 1区 数学 Q1 MATHEMATICS
Karlheinz Gröchenig, Andreas Klotz
{"title":"Necessary density conditions for sampling and interpolation in spectral subspaces of elliptic differential operators","authors":"Karlheinz Gröchenig, Andreas Klotz","doi":"10.2140/apde.2024.17.587","DOIUrl":null,"url":null,"abstract":"<p>We prove necessary density conditions for sampling in spectral subspaces of a second-order uniformly elliptic differential operator on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>d</mi></mrow></msup></math> with slowly oscillating symbol. For constant-coefficient operators, these are precisely Landau’s necessary density conditions for bandlimited functions, but for more general elliptic differential operators it has been unknown whether such a critical density even exists. Our results prove the existence of a suitable critical sampling density and compute it in terms of the geometry defined by the elliptic operator. In dimension <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi>\n<mo>=</mo> <mn>1</mn></math>, functions in a spectral subspace can be interpreted as functions with variable bandwidth, and we obtain a new critical density for variable bandwidth. The methods are a combination of the spectral theory and the regularity theory of elliptic partial differential operators, some elements of limit operators, certain compactifications of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>d</mi></mrow></msup> </math>, and the theory of reproducing kernel Hilbert spaces. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"21 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.587","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove necessary density conditions for sampling in spectral subspaces of a second-order uniformly elliptic differential operator on d with slowly oscillating symbol. For constant-coefficient operators, these are precisely Landau’s necessary density conditions for bandlimited functions, but for more general elliptic differential operators it has been unknown whether such a critical density even exists. Our results prove the existence of a suitable critical sampling density and compute it in terms of the geometry defined by the elliptic operator. In dimension d = 1, functions in a spectral subspace can be interpreted as functions with variable bandwidth, and we obtain a new critical density for variable bandwidth. The methods are a combination of the spectral theory and the regularity theory of elliptic partial differential operators, some elements of limit operators, certain compactifications of d , and the theory of reproducing kernel Hilbert spaces.

椭圆微分算子谱子空间中采样和插值的必要密度条件
我们证明了在ℝd 上具有缓慢振荡符号的二阶均匀椭圆微分算子的谱子空间中采样的必要密度条件。对于常系数算子,这些正是朗道的带限函数必要密度条件,但对于更一般的椭圆微分算子,是否存在这样的临界密度一直是未知数。我们的结果证明了合适的临界采样密度的存在,并根据椭圆算子定义的几何形状计算了它。在维数 d= 1 时,谱子空间中的函数可以解释为带宽可变的函数,我们得到了可变带宽的新临界密度。这些方法结合了椭圆偏微分算子的谱理论和正则性理论、极限算子的某些元素、ℝd 的某些紧凑性以及重现核希尔伯特空间理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis & PDE
Analysis & PDE MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信