Density peak clustering using tensor network

IF 7.6 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xiao Shi, Yun Shang
{"title":"Density peak clustering using tensor network","authors":"Xiao Shi, Yun Shang","doi":"10.1007/s11432-023-3869-3","DOIUrl":null,"url":null,"abstract":"<p>We introduce a density-based clustering algorithm with tensor networks. In order to demonstrate its effectiveness, we apply it to various types of data sets, including synthetic data sets, real world data sets, and computer vision data sets. Results demonstrate that it is an efficient quantum-inspired unsupervised learning algorithm and can recognize clusters of arbitrary shape and size. It can also be seen that large quantum entanglement tends to provide better clustering results.</p>","PeriodicalId":21618,"journal":{"name":"Science China Information Sciences","volume":"54 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11432-023-3869-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a density-based clustering algorithm with tensor networks. In order to demonstrate its effectiveness, we apply it to various types of data sets, including synthetic data sets, real world data sets, and computer vision data sets. Results demonstrate that it is an efficient quantum-inspired unsupervised learning algorithm and can recognize clusters of arbitrary shape and size. It can also be seen that large quantum entanglement tends to provide better clustering results.

利用张量网络进行密度峰聚类
我们介绍了一种基于密度的张量网络聚类算法。为了证明该算法的有效性,我们将其应用于各种类型的数据集,包括合成数据集、现实世界数据集和计算机视觉数据集。结果表明,这是一种高效的量子启发无监督学习算法,可以识别任意形状和大小的聚类。还可以看出,大量子纠缠往往能提供更好的聚类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Information Sciences
Science China Information Sciences COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
12.60
自引率
5.70%
发文量
224
审稿时长
8.3 months
期刊介绍: Science China Information Sciences is a dedicated journal that showcases high-quality, original research across various domains of information sciences. It encompasses Computer Science & Technologies, Control Science & Engineering, Information & Communication Engineering, Microelectronics & Solid-State Electronics, and Quantum Information, providing a platform for the dissemination of significant contributions in these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信