A functional equation related to Wigner’s theorem

IF 0.9 3区 数学 Q2 MATHEMATICS
Xujian Huang, Liming Zhang, Shuming Wang
{"title":"A functional equation related to Wigner’s theorem","authors":"Xujian Huang,&nbsp;Liming Zhang,&nbsp;Shuming Wang","doi":"10.1007/s00010-024-01042-8","DOIUrl":null,"url":null,"abstract":"<div><p>An open problem posed by G. Maksa and Z. Páles is to find the general solution of the functional equation </p><div><div><span>$$\\begin{aligned} \\{\\Vert f(x)-\\beta f(y)\\Vert : \\beta \\in {\\mathbb {T}}_n\\}=\\{\\Vert x-\\beta y\\Vert : \\beta \\in {\\mathbb {T}}_n\\} \\quad (x,y\\in H) \\end{aligned}$$</span></div></div><p>where <span>\\(f: H \\rightarrow K\\)</span> is between two complex normed spaces and <span>\\({\\mathbb {T}}_n:=\\{e^{i\\frac{2k\\pi }{n}}: k=1, \\cdots ,n\\}\\)</span> is the set of the <i>n</i>th roots of unity. With the aid of the celebrated Wigner’s unitary-antiunitary theorem, we show that if <span>\\(n\\ge 3\\)</span> and <i>H</i> and <i>K</i> are complex inner product spaces, then <i>f</i> satisfies the above equation if and only if there exists a phase function <span>\\(\\sigma : H\\rightarrow {\\mathbb {T}}_n\\)</span> such that <span>\\(\\sigma \\cdot f\\)</span> is a linear or anti-linear isometry. Moreover, if the solution <i>f</i> is continuous, then <i>f</i> is a linear or anti-linear isometry.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"98 3","pages":"885 - 894"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01042-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

An open problem posed by G. Maksa and Z. Páles is to find the general solution of the functional equation

$$\begin{aligned} \{\Vert f(x)-\beta f(y)\Vert : \beta \in {\mathbb {T}}_n\}=\{\Vert x-\beta y\Vert : \beta \in {\mathbb {T}}_n\} \quad (x,y\in H) \end{aligned}$$

where \(f: H \rightarrow K\) is between two complex normed spaces and \({\mathbb {T}}_n:=\{e^{i\frac{2k\pi }{n}}: k=1, \cdots ,n\}\) is the set of the nth roots of unity. With the aid of the celebrated Wigner’s unitary-antiunitary theorem, we show that if \(n\ge 3\) and H and K are complex inner product spaces, then f satisfies the above equation if and only if there exists a phase function \(\sigma : H\rightarrow {\mathbb {T}}_n\) such that \(\sigma \cdot f\) is a linear or anti-linear isometry. Moreover, if the solution f is continuous, then f is a linear or anti-linear isometry.

与维格纳定理有关的函数方程
摘要 G. Maksa 和 Z. Páles 提出的一个未决问题是找到函数方程 $$\begin{aligned} 的一般解。\f(x)-beta f(y)\Vert :={vert x-\beta y\Vert :\in {\mathbb {T}_n\}\quad (x,y\in H) \end{aligned}$$ 其中 \(f: H \rightarrow K\) 是两个复规范空间之间的关系,而 \({\mathbb {T}}_n:=\{e^{i\frac{2k\pi }{n}}: k=1, \cdots ,n\}\) 是第 n 个统一根的集合。借助著名的维格纳单元-反单元定理,我们证明如果 \(n\ge 3\) 和 H 和 K 是复内积空间,那么当且仅当存在相位函数 \(\sigma : H\rightarrow {\mathbb {T}}_n\) 使得 \(\sigma \cdot f\) 是线性或反线性等值线时,f 满足上述方程。此外,如果解f是连续的,那么f就是线性或反线性等值线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信