A functional equation related to Wigner’s theorem

Pub Date : 2024-03-07 DOI:10.1007/s00010-024-01042-8
Xujian Huang, Liming Zhang, Shuming Wang
{"title":"A functional equation related to Wigner’s theorem","authors":"Xujian Huang,&nbsp;Liming Zhang,&nbsp;Shuming Wang","doi":"10.1007/s00010-024-01042-8","DOIUrl":null,"url":null,"abstract":"<div><p>An open problem posed by G. Maksa and Z. Páles is to find the general solution of the functional equation </p><div><div><span>$$\\begin{aligned} \\{\\Vert f(x)-\\beta f(y)\\Vert : \\beta \\in {\\mathbb {T}}_n\\}=\\{\\Vert x-\\beta y\\Vert : \\beta \\in {\\mathbb {T}}_n\\} \\quad (x,y\\in H) \\end{aligned}$$</span></div></div><p>where <span>\\(f: H \\rightarrow K\\)</span> is between two complex normed spaces and <span>\\({\\mathbb {T}}_n:=\\{e^{i\\frac{2k\\pi }{n}}: k=1, \\cdots ,n\\}\\)</span> is the set of the <i>n</i>th roots of unity. With the aid of the celebrated Wigner’s unitary-antiunitary theorem, we show that if <span>\\(n\\ge 3\\)</span> and <i>H</i> and <i>K</i> are complex inner product spaces, then <i>f</i> satisfies the above equation if and only if there exists a phase function <span>\\(\\sigma : H\\rightarrow {\\mathbb {T}}_n\\)</span> such that <span>\\(\\sigma \\cdot f\\)</span> is a linear or anti-linear isometry. Moreover, if the solution <i>f</i> is continuous, then <i>f</i> is a linear or anti-linear isometry.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01042-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An open problem posed by G. Maksa and Z. Páles is to find the general solution of the functional equation

$$\begin{aligned} \{\Vert f(x)-\beta f(y)\Vert : \beta \in {\mathbb {T}}_n\}=\{\Vert x-\beta y\Vert : \beta \in {\mathbb {T}}_n\} \quad (x,y\in H) \end{aligned}$$

where \(f: H \rightarrow K\) is between two complex normed spaces and \({\mathbb {T}}_n:=\{e^{i\frac{2k\pi }{n}}: k=1, \cdots ,n\}\) is the set of the nth roots of unity. With the aid of the celebrated Wigner’s unitary-antiunitary theorem, we show that if \(n\ge 3\) and H and K are complex inner product spaces, then f satisfies the above equation if and only if there exists a phase function \(\sigma : H\rightarrow {\mathbb {T}}_n\) such that \(\sigma \cdot f\) is a linear or anti-linear isometry. Moreover, if the solution f is continuous, then f is a linear or anti-linear isometry.

分享
查看原文
与维格纳定理有关的函数方程
摘要 G. Maksa 和 Z. Páles 提出的一个未决问题是找到函数方程 $$\begin{aligned} 的一般解。\f(x)-beta f(y)\Vert :={vert x-\beta y\Vert :\in {\mathbb {T}_n\}\quad (x,y\in H) \end{aligned}$$ 其中 \(f: H \rightarrow K\) 是两个复规范空间之间的关系,而 \({\mathbb {T}}_n:=\{e^{i\frac{2k\pi }{n}}: k=1, \cdots ,n\}\) 是第 n 个统一根的集合。借助著名的维格纳单元-反单元定理,我们证明如果 \(n\ge 3\) 和 H 和 K 是复内积空间,那么当且仅当存在相位函数 \(\sigma : H\rightarrow {\mathbb {T}}_n\) 使得 \(\sigma \cdot f\) 是线性或反线性等值线时,f 满足上述方程。此外,如果解f是连续的,那么f就是线性或反线性等值线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信