Clustering spatial functional data using a geographically weighted Dirichlet process

Pub Date : 2024-01-05 DOI:10.1002/cjs.11803
Tianyu Pan, Weining Shen, Guanyu Hu
{"title":"Clustering spatial functional data using a geographically weighted Dirichlet process","authors":"Tianyu Pan,&nbsp;Weining Shen,&nbsp;Guanyu Hu","doi":"10.1002/cjs.11803","DOIUrl":null,"url":null,"abstract":"<p>We propose a Bayesian nonparametric clustering approach to study the spatial heterogeneity effect for functional data observed at spatially correlated locations. We consider a geographically weighted Chinese restaurant process equipped with a conditional autoregressive prior to capture fully the spatial correlation of function curves. To sample efficiently from our model, we customize a prior called Quadratic Gamma, which ensures conjugacy. We design a Markov chain Monte Carlo algorithm to infer simultaneously the posterior distributions of the number of groups and the grouping configurations. The superior numerical performance of the proposed method over competing methods is demonstrated using simulated examples and a U.S. annual precipitation study.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a Bayesian nonparametric clustering approach to study the spatial heterogeneity effect for functional data observed at spatially correlated locations. We consider a geographically weighted Chinese restaurant process equipped with a conditional autoregressive prior to capture fully the spatial correlation of function curves. To sample efficiently from our model, we customize a prior called Quadratic Gamma, which ensures conjugacy. We design a Markov chain Monte Carlo algorithm to infer simultaneously the posterior distributions of the number of groups and the grouping configurations. The superior numerical performance of the proposed method over competing methods is demonstrated using simulated examples and a U.S. annual precipitation study.

分享
查看原文
使用地理加权 Dirichlet 过程对空间功能数据进行聚类
我们提出了一种贝叶斯非参数聚类方法,用于研究在空间相关地点观测到的函数数据的空间异质性效应。我们考虑了一个地理加权的中餐馆过程,该过程配备了一个条件自回归先验,以充分捕捉功能曲线的空间相关性。为了从我们的模型中有效采样,我们定制了一种名为 Quadratic Gamma 的先验,它能确保共轭性。我们设计了一种马尔科夫链蒙特卡洛算法,以同时推断分组数和分组配置的后验分布。通过模拟实例和美国年降水量研究,证明了所提出的方法在数值性能上优于其他竞争方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信