{"title":"Odd strength spherical designs attaining the Fazekas–Levenshtein bound for covering and universal minima of potentials","authors":"Sergiy Borodachov","doi":"10.1007/s00010-024-01036-6","DOIUrl":null,"url":null,"abstract":"<div><p>We characterize the cases of existence of spherical designs of an odd strength attaining the Fazekas–Levenshtein bound for covering and prove some of their properties. We also find all universal minima of the potential of regular spherical configurations in two new cases: the demihypercube on <span>\\(S^d\\)</span>, <span>\\(d\\ge 4\\)</span>, and the <span>\\(2_{41}\\)</span> polytope on <span>\\(S^7\\)</span> (which is dual to the <span>\\(E_8\\)</span> lattice).\n</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"98 2","pages":"509 - 533"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00010-024-01036-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01036-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We characterize the cases of existence of spherical designs of an odd strength attaining the Fazekas–Levenshtein bound for covering and prove some of their properties. We also find all universal minima of the potential of regular spherical configurations in two new cases: the demihypercube on \(S^d\), \(d\ge 4\), and the \(2_{41}\) polytope on \(S^7\) (which is dual to the \(E_8\) lattice).
期刊介绍:
aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.