{"title":"Some new perspectives on the Kruskal–Szekeres extension with applications to photon surfaces","authors":"Carla Cederbaum, Markus Wolff","doi":"10.1007/s11005-024-01779-y","DOIUrl":null,"url":null,"abstract":"<div><p>It is a well-known fact that the Schwarzschild spacetime admits a maximal spacetime extension in null coordinates which extends the exterior Schwarzschild region past the Killing horizon, called the Kruskal–Szekeres extension. This method of extending the Schwarzschild spacetime was later generalized by Brill–Hayward to a class of spacetimes of “profile <i>h</i>” across non-degenerate Killing horizons. Circumventing analytical subtleties in their approach, we reconfirm this fact by reformulating the problem as an ODE, and showing that the ODE admits a solution if and only if the naturally arising Killing horizon is non-degenerate. Notably, this approach lends itself to discussing regularity across the horizon for non-smooth metrics. We will discuss applications to the study of photon surfaces, extending results by Cederbaum–Galloway and Cederbaum–Jahns–Vičánek-Martínez beyond the Killing horizon. In particular, our analysis asserts that photon surfaces approaching the Killing horizon must necessarily cross it.\n</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-024-01779-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01779-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
It is a well-known fact that the Schwarzschild spacetime admits a maximal spacetime extension in null coordinates which extends the exterior Schwarzschild region past the Killing horizon, called the Kruskal–Szekeres extension. This method of extending the Schwarzschild spacetime was later generalized by Brill–Hayward to a class of spacetimes of “profile h” across non-degenerate Killing horizons. Circumventing analytical subtleties in their approach, we reconfirm this fact by reformulating the problem as an ODE, and showing that the ODE admits a solution if and only if the naturally arising Killing horizon is non-degenerate. Notably, this approach lends itself to discussing regularity across the horizon for non-smooth metrics. We will discuss applications to the study of photon surfaces, extending results by Cederbaum–Galloway and Cederbaum–Jahns–Vičánek-Martínez beyond the Killing horizon. In particular, our analysis asserts that photon surfaces approaching the Killing horizon must necessarily cross it.
期刊介绍:
The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.