Level constrained first order methods for function constrained optimization

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Digvijay Boob, Qi Deng, Guanghui Lan
{"title":"Level constrained first order methods for function constrained optimization","authors":"Digvijay Boob, Qi Deng, Guanghui Lan","doi":"10.1007/s10107-024-02057-4","DOIUrl":null,"url":null,"abstract":"<p>We present a new feasible proximal gradient method for constrained optimization where both the objective and constraint functions are given by summation of a smooth, possibly nonconvex function and a convex simple function. The algorithm converts the original problem into a sequence of convex subproblems. Formulating those subproblems requires the evaluation of at most one gradient-value of the original objective and constraint functions. Either exact or approximate subproblems solutions can be computed efficiently in many cases. An important feature of the algorithm is the constraint level parameter. By carefully increasing this level for each subproblem, we provide a simple solution to overcome the challenge of bounding the Lagrangian multipliers and show that the algorithm follows a strictly feasible solution path till convergence to the stationary point. We develop a simple, proximal gradient descent type analysis, showing that the complexity bound of this new algorithm is comparable to gradient descent for the unconstrained setting which is new in the literature. Exploiting this new design and analysis technique, we extend our algorithms to some more challenging constrained optimization problems where (1) the objective is a stochastic or finite-sum function, and (2) structured nonsmooth functions replace smooth components of both objective and constraint functions. Complexity results for these problems also seem to be new in the literature. Finally, our method can also be applied to convex function constrained problems where we show complexities similar to the proximal gradient method.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02057-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a new feasible proximal gradient method for constrained optimization where both the objective and constraint functions are given by summation of a smooth, possibly nonconvex function and a convex simple function. The algorithm converts the original problem into a sequence of convex subproblems. Formulating those subproblems requires the evaluation of at most one gradient-value of the original objective and constraint functions. Either exact or approximate subproblems solutions can be computed efficiently in many cases. An important feature of the algorithm is the constraint level parameter. By carefully increasing this level for each subproblem, we provide a simple solution to overcome the challenge of bounding the Lagrangian multipliers and show that the algorithm follows a strictly feasible solution path till convergence to the stationary point. We develop a simple, proximal gradient descent type analysis, showing that the complexity bound of this new algorithm is comparable to gradient descent for the unconstrained setting which is new in the literature. Exploiting this new design and analysis technique, we extend our algorithms to some more challenging constrained optimization problems where (1) the objective is a stochastic or finite-sum function, and (2) structured nonsmooth functions replace smooth components of both objective and constraint functions. Complexity results for these problems also seem to be new in the literature. Finally, our method can also be applied to convex function constrained problems where we show complexities similar to the proximal gradient method.

Abstract Image

函数约束优化的水平约束一阶方法
我们提出了一种新的可行近似梯度法,用于目标函数和约束函数都由一个平滑的、可能是非凸函数和一个凸简单函数求和给出的约束优化。该算法将原始问题转化为一系列凸子问题。提出这些子问题时,最多需要评估原始目标函数和约束函数的一个梯度值。在许多情况下,精确或近似的子问题解决方案都可以高效地计算出来。该算法的一个重要特点是约束水平参数。通过小心地增加每个子问题的约束水平参数,我们提供了一个简单的解决方案,以克服约束拉格朗日乘数的挑战,并证明该算法遵循严格可行的求解路径,直至收敛到静止点。我们开发了一种简单的近似梯度下降类型分析,表明这种新算法的复杂度约束与文献中新出现的无约束环境下的梯度下降算法相当。利用这一新的设计和分析技术,我们将算法扩展到了一些更具挑战性的约束优化问题,在这些问题中,(1) 目标是随机或有限和函数,(2) 结构化非光滑函数取代了目标和约束函数的光滑成分。这些问题的复杂性结果在文献中似乎也是全新的。最后,我们的方法还可以应用于凸函数约束问题,在这些问题中,我们展示了与近似梯度法类似的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信