{"title":"ZF and its interpretations","authors":"S. Jockwich Martinez , S. Tarafder , G. Venturi","doi":"10.1016/j.apal.2024.103427","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we unify the study of classical and non-classical algebra-valued models of set theory, by studying variations of the interpretation functions for = and ∈. Although, these variations coincide with the standard interpretation in Boolean-valued constructions, nonetheless they extend the scope of validity of <span><math><mi>ZF</mi></math></span> to new algebra-valued models. This paper presents, for the first time, non-trivial paraconsistent models of full <span><math><mi>ZF</mi></math></span>. Moreover, due to the validity of Leibniz's law in these structures, we will show how to construct proper models of set theory by quotienting these algebra-valued models with respect to equality, modulo the filter of the designated truth-values.</p></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"175 6","pages":"Article 103427"},"PeriodicalIF":0.6000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168007224000241/pdfft?md5=9d7bf0eef51dc942a71051fb8dfcc3b5&pid=1-s2.0-S0168007224000241-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007224000241","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we unify the study of classical and non-classical algebra-valued models of set theory, by studying variations of the interpretation functions for = and ∈. Although, these variations coincide with the standard interpretation in Boolean-valued constructions, nonetheless they extend the scope of validity of to new algebra-valued models. This paper presents, for the first time, non-trivial paraconsistent models of full . Moreover, due to the validity of Leibniz's law in these structures, we will show how to construct proper models of set theory by quotienting these algebra-valued models with respect to equality, modulo the filter of the designated truth-values.
期刊介绍:
The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.