{"title":"The effect of uneven and obstructed site layouts in best-of-N","authors":"Jennifer Leaf, Julie A. Adams","doi":"10.1007/s11721-024-00236-9","DOIUrl":null,"url":null,"abstract":"<p>Biologically inspired collective decision-making algorithms show promise for implementing spatially distributed searching tasks with robotic systems. One example is the best-of-N problem in which a collective must search an environment for an unknown number of sites and select the best option. Real-world robotic deployments must achieve acceptable success rates and execution times across a wide variety of environmental conditions, a property known as <i>resilience</i>. Existing experiments for the best-of-N problem have not explicitly examined how the site layout affects a collective’s performance and resilience. Two novel resilience metrics are used to compare algorithmic performance and resilience between evenly distributed, obstructed, or unobstructed uneven site configurations. Obstructing the highest valued site negatively affected selection accuracy for both algorithms, while uneven site distribution had no effect on either algorithm’s resilience. The results also illuminate the distinction between <i>absolute resilience</i> as measured against an objective standard, and <i>relative resilience</i> used to compare an algorithm’s performance across different operating conditions.</p>","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"16 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11721-024-00236-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Biologically inspired collective decision-making algorithms show promise for implementing spatially distributed searching tasks with robotic systems. One example is the best-of-N problem in which a collective must search an environment for an unknown number of sites and select the best option. Real-world robotic deployments must achieve acceptable success rates and execution times across a wide variety of environmental conditions, a property known as resilience. Existing experiments for the best-of-N problem have not explicitly examined how the site layout affects a collective’s performance and resilience. Two novel resilience metrics are used to compare algorithmic performance and resilience between evenly distributed, obstructed, or unobstructed uneven site configurations. Obstructing the highest valued site negatively affected selection accuracy for both algorithms, while uneven site distribution had no effect on either algorithm’s resilience. The results also illuminate the distinction between absolute resilience as measured against an objective standard, and relative resilience used to compare an algorithm’s performance across different operating conditions.
期刊介绍:
Swarm Intelligence is the principal peer-reviewed publication dedicated to reporting on research
and developments in the multidisciplinary field of swarm intelligence. The journal publishes
original research articles and occasional review articles on theoretical, experimental and/or
practical aspects of swarm intelligence. All articles are published both in print and in electronic
form. There are no page charges for publication. Swarm Intelligence is published quarterly.
The field of swarm intelligence deals with systems composed of many individuals that coordinate
using decentralized control and self-organization. In particular, it focuses on the collective
behaviors that result from the local interactions of the individuals with each other and with their
environment. It is a fast-growing field that encompasses the efforts of researchers in multiple
disciplines, ranging from ethology and social science to operations research and computer
engineering.
Swarm Intelligence will report on advances in the understanding and utilization of swarm
intelligence systems, that is, systems that are based on the principles of swarm intelligence. The
following subjects are of particular interest to the journal:
• modeling and analysis of collective biological systems such as social insect colonies, flocking
vertebrates, and human crowds as well as any other swarm intelligence systems;
• application of biological swarm intelligence models to real-world problems such as distributed
computing, data clustering, graph partitioning, optimization and decision making;
• theoretical and empirical research in ant colony optimization, particle swarm optimization,
swarm robotics, and other swarm intelligence algorithms.