Description of the symmetric $$H_q$$ -Laguerre–Hahn orthogonal q-polynomials of class one

Pub Date : 2024-03-06 DOI:10.1007/s10998-024-00574-5
Sobhi Jbeli
{"title":"Description of the symmetric $$H_q$$ -Laguerre–Hahn orthogonal q-polynomials of class one","authors":"Sobhi Jbeli","doi":"10.1007/s10998-024-00574-5","DOIUrl":null,"url":null,"abstract":"<p>We study the <span>\\(H_{q}\\)</span>-Laguerre–Hahn forms <i>u</i>, that is to say those satisfying a <i>q</i>-quadratic <i>q</i>-difference equation with polynomial coefficients (<span>\\(\\Phi , \\Psi , B\\)</span>): <span>\\( H_{q}(\\Phi (x)u) +\\Psi (x) u+B(x) \\, \\big (x^{-1}u(h_{q}u)\\big )=0,\\)</span> where <span>\\(h_q u\\)</span> is the form defined by <span>\\(\\langle h_{q} u,f\\rangle =\\langle u, f(qx)\\rangle \\)</span> for all polynomials <i>f</i> and <span>\\(H_{q}\\)</span> is the <i>q</i>-derivative operator. We give the definition of the class <i>s</i> of such a form and the characterization of its corresponding orthogonal <i>q</i>-polynomials sequence <span>\\(\\{P_n\\}_{n\\ge 0}\\)</span> by the structure relation. As a consequence, we establish the system fulfilled by the coefficients of the structure relation, those of the polynomials <span>\\(\\Phi , \\Psi , B\\)</span> and the recurrence coefficient <span>\\(\\gamma _{n+1}, \\, n \\ge 0\\)</span>, of <span>\\(\\{P_n\\}_{n\\ge 0}\\)</span> for the class one in the symmetric case. In addition, we present the complete description of the symmetric <span>\\(H_{q}\\)</span>-Laguerre–Hahn forms of class <span>\\(s=1.\\)</span> The limiting cases are also covered.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-024-00574-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the \(H_{q}\)-Laguerre–Hahn forms u, that is to say those satisfying a q-quadratic q-difference equation with polynomial coefficients (\(\Phi , \Psi , B\)): \( H_{q}(\Phi (x)u) +\Psi (x) u+B(x) \, \big (x^{-1}u(h_{q}u)\big )=0,\) where \(h_q u\) is the form defined by \(\langle h_{q} u,f\rangle =\langle u, f(qx)\rangle \) for all polynomials f and \(H_{q}\) is the q-derivative operator. We give the definition of the class s of such a form and the characterization of its corresponding orthogonal q-polynomials sequence \(\{P_n\}_{n\ge 0}\) by the structure relation. As a consequence, we establish the system fulfilled by the coefficients of the structure relation, those of the polynomials \(\Phi , \Psi , B\) and the recurrence coefficient \(\gamma _{n+1}, \, n \ge 0\), of \(\{P_n\}_{n\ge 0}\) for the class one in the symmetric case. In addition, we present the complete description of the symmetric \(H_{q}\)-Laguerre–Hahn forms of class \(s=1.\) The limiting cases are also covered.

分享
查看原文
一级对称 $$H_q$$ -Laguerre-Hahn 正交 q 多项式的描述
我们研究的是\(H_{q}\)-拉盖尔-哈恩形式u,即那些满足多项式系数(\(\Phi , \Psi , B\) )的q-二次q-差分方程的形式:\( H_{q}(\Phi (x)u) +\Psi (x) u+B(x) \, \big (x^{-1}u(h_{q}u)\big )=0,\) 其中 \(h_q u\) 是由((langle h_{q} u、f(qx)\rangle \)对于所有多项式 f 而言都是定义的形式,而 \(H_{q}\)是 q 衍生算子。我们给出了这种形式的类 s 的定义,并通过结构关系描述了其对应的正交 q 多项式序列 \(\{P_n\}_{n\ge 0}\)。因此,我们为对称情况下的类一建立了由结构关系系数、多项式系数(\Phi , \Psi , B\ )和 \(\gamma _{n+1}, \, n \ge 0\) 的递推系数(\(\{P_n\}_{n\ge 0}\ )满足的系统。此外,我们还完整地描述了类\(s=1.\)的对称\(H_{q}\)-拉盖尔-哈恩形式的极限情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信