Multi-Message Shuffled Privacy in Federated Learning

Antonious M. Girgis;Suhas Diggavi
{"title":"Multi-Message Shuffled Privacy in Federated Learning","authors":"Antonious M. Girgis;Suhas Diggavi","doi":"10.1109/JSAIT.2024.3366225","DOIUrl":null,"url":null,"abstract":"We study the distributed mean estimation (DME) problem under privacy and communication constraints in the local differential privacy (LDP) and multi-message shuffled (MMS) privacy frameworks. The DME has wide applications in both federated learning and analytics. We propose a communication-efficient and differentially private algorithm for DME of bounded \n<inline-formula> <tex-math>$\\ell _{2}$ </tex-math></inline-formula>\n-norm and \n<inline-formula> <tex-math>$\\ell _{\\infty }$ </tex-math></inline-formula>\n-norm vectors. We analyze our proposed DME schemes showing that our algorithms have order-optimal privacy-communication-performance trade-offs. Our algorithms are designed by giving unequal privacy assignments at different resolutions of the vector (through binary expansion) and appropriately combining it with coordinate sampling. These results are directly applied to give guarantees on private federated learning algorithms. We also numerically evaluate the performance of our private DME algorithms.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"5 ","pages":"12-27"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10436711/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the distributed mean estimation (DME) problem under privacy and communication constraints in the local differential privacy (LDP) and multi-message shuffled (MMS) privacy frameworks. The DME has wide applications in both federated learning and analytics. We propose a communication-efficient and differentially private algorithm for DME of bounded $\ell _{2}$ -norm and $\ell _{\infty }$ -norm vectors. We analyze our proposed DME schemes showing that our algorithms have order-optimal privacy-communication-performance trade-offs. Our algorithms are designed by giving unequal privacy assignments at different resolutions of the vector (through binary expansion) and appropriately combining it with coordinate sampling. These results are directly applied to give guarantees on private federated learning algorithms. We also numerically evaluate the performance of our private DME algorithms.
联盟学习中的多信息洗牌隐私保护
我们在局部差分隐私(LDP)和多信息洗牌(MMS)隐私框架中研究了隐私和通信约束下的分布式均值估计(DME)问题。分布式均值估计在联合学习和分析中都有广泛的应用。我们为有界$\ell _{2}$ -norm和$\ell _{\infty }$ -norm向量的DME提出了一种通信效率高、差异隐私的算法。我们对提出的 DME 方案进行了分析,结果表明我们的算法具有阶次最优的隐私-通信-性能权衡。我们的算法是通过在向量的不同分辨率下给出不平等的隐私分配(通过二进制扩展),并与坐标采样适当结合而设计的。这些结果可直接用于为私有联合学习算法提供保证。我们还对私有 DME 算法的性能进行了数值评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信