AlphaFold-assisted structure determination of a bacterial protein of unknown function using X-ray and electron crystallography.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-04-01 Epub Date: 2024-03-07 DOI:10.1107/S205979832400072X
Justin E Miller, Matthew P Agdanowski, Joshua L Dolinsky, Michael R Sawaya, Duilio Cascio, Jose A Rodriguez, Todd O Yeates
{"title":"AlphaFold-assisted structure determination of a bacterial protein of unknown function using X-ray and electron crystallography.","authors":"Justin E Miller, Matthew P Agdanowski, Joshua L Dolinsky, Michael R Sawaya, Duilio Cascio, Jose A Rodriguez, Todd O Yeates","doi":"10.1107/S205979832400072X","DOIUrl":null,"url":null,"abstract":"<p><p>Macromolecular crystallography generally requires the recovery of missing phase information from diffraction data to reconstruct an electron-density map of the crystallized molecule. Most recent structures have been solved using molecular replacement as a phasing method, requiring an a priori structure that is closely related to the target protein to serve as a search model; when no such search model exists, molecular replacement is not possible. New advances in computational machine-learning methods, however, have resulted in major advances in protein structure predictions from sequence information. Methods that generate predicted structural models of sufficient accuracy provide a powerful approach to molecular replacement. Taking advantage of these advances, AlphaFold predictions were applied to enable structure determination of a bacterial protein of unknown function (UniProtKB Q63NT7, NCBI locus BPSS0212) based on diffraction data that had evaded phasing attempts using MIR and anomalous scattering methods. Using both X-ray and micro-electron (microED) diffraction data, it was possible to solve the structure of the main fragment of the protein using a predicted model of that domain as a starting point. The use of predicted structural models importantly expands the promise of electron diffraction, where structure determination relies critically on molecular replacement.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10994174/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S205979832400072X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Macromolecular crystallography generally requires the recovery of missing phase information from diffraction data to reconstruct an electron-density map of the crystallized molecule. Most recent structures have been solved using molecular replacement as a phasing method, requiring an a priori structure that is closely related to the target protein to serve as a search model; when no such search model exists, molecular replacement is not possible. New advances in computational machine-learning methods, however, have resulted in major advances in protein structure predictions from sequence information. Methods that generate predicted structural models of sufficient accuracy provide a powerful approach to molecular replacement. Taking advantage of these advances, AlphaFold predictions were applied to enable structure determination of a bacterial protein of unknown function (UniProtKB Q63NT7, NCBI locus BPSS0212) based on diffraction data that had evaded phasing attempts using MIR and anomalous scattering methods. Using both X-ray and micro-electron (microED) diffraction data, it was possible to solve the structure of the main fragment of the protein using a predicted model of that domain as a starting point. The use of predicted structural models importantly expands the promise of electron diffraction, where structure determination relies critically on molecular replacement.

Abstract Image

利用 X 射线和电子晶体学技术,在 AlphaFold 辅助下确定一种功能未知的细菌蛋白质的结构。
大分子晶体学通常需要从衍射数据中恢复缺失的相位信息,以重建结晶分子的电子密度图。最近的大多数结构都是采用分子置换的相位分析方法来解决的,这需要一个与目标蛋白质密切相关的先验结构作为搜索模型;如果没有这样的搜索模型,则无法进行分子置换。然而,计算机器学习方法的新进展已经在根据序列信息预测蛋白质结构方面取得了重大进展。能够生成足够准确的预测结构模型的方法为分子替换提供了一种强有力的方法。利用这些进步,AlphaFold 预测方法被用于确定一种功能未知的细菌蛋白质(UniProtKB Q63NT7,NCBI 基因座 BPSS0212)的结构。利用 X 射线和微电子(microED)衍射数据,以该结构域的预测模型为起点,可以解决蛋白质主要片段的结构问题。预测结构模型的使用极大地拓展了电子衍射的前景,在电子衍射中,结构的确定主要依赖于分子置换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信