Whittaker vectors for $$\mathcal {W}$$ -algebras from topological recursion

Gaëtan Borot, Vincent Bouchard, Nitin K. Chidambaram, Thomas Creutzig
{"title":"Whittaker vectors for $$\\mathcal {W}$$ -algebras from topological recursion","authors":"Gaëtan Borot, Vincent Bouchard, Nitin K. Chidambaram, Thomas Creutzig","doi":"10.1007/s00029-024-00921-x","DOIUrl":null,"url":null,"abstract":"<p>We identify Whittaker vectors for <span>\\(\\mathcal {W}^{\\textsf{k}}(\\mathfrak {g})\\)</span>-modules with partition functions of higher Airy structures. This implies that Gaiotto vectors, describing the fundamental class in the equivariant cohomology of a suitable compactification of the moduli space of <i>G</i>-bundles over <span>\\(\\mathbb {P}^2\\)</span> for <i>G</i> a complex simple Lie group, can be computed by a non-commutative version of the Chekhov–Eynard–Orantin topological recursion. We formulate the connection to higher Airy structures for Gaiotto vectors of type A, B, C, and D, and explicitly construct the topological recursion for type A (at arbitrary level) and type B (at self-dual level). On the physics side, it means that the Nekrasov partition function for pure <span>\\(\\mathcal {N} = 2\\)</span> four-dimensional supersymmetric gauge theories can be accessed by topological recursion methods.\n</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"248 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00921-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We identify Whittaker vectors for \(\mathcal {W}^{\textsf{k}}(\mathfrak {g})\)-modules with partition functions of higher Airy structures. This implies that Gaiotto vectors, describing the fundamental class in the equivariant cohomology of a suitable compactification of the moduli space of G-bundles over \(\mathbb {P}^2\) for G a complex simple Lie group, can be computed by a non-commutative version of the Chekhov–Eynard–Orantin topological recursion. We formulate the connection to higher Airy structures for Gaiotto vectors of type A, B, C, and D, and explicitly construct the topological recursion for type A (at arbitrary level) and type B (at self-dual level). On the physics side, it means that the Nekrasov partition function for pure \(\mathcal {N} = 2\) four-dimensional supersymmetric gauge theories can be accessed by topological recursion methods.

Abstract Image

从拓扑递归看 $$mathcal {W}$ - 算法的惠特克向量
我们将 \(\mathcal {W}^{textsf{k}}(\mathfrak {g})\模块的惠特克向量(Whittaker vectors)与高等艾里结构的分割函数(partition functions of higher Airy structures)相提并论。这意味着可以通过非交换版本的契科夫-艾纳德-奥兰汀拓扑递推来计算Gaiotto矢量,该矢量描述了对于复杂简单李群来说,G-束在\(\mathbb {P}^2\) 上的模空间的适当紧凑化的等变同调中的基类。我们提出了 A、B、C 和 D 型 Gaiotto 向量与高阶艾里结构的联系,并明确构建了 A 型(任意级)和 B 型(自双级)的拓扑递归。在物理学方面,这意味着可以通过拓扑递归方法获取纯粹(\mathcal {N} = 2\ )四维超对称规理论的涅克拉索夫划分函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信