On the logarithmic slice filtration

Federico Binda, Doosung Park, Paul Arne Østvær
{"title":"On the logarithmic slice filtration","authors":"Federico Binda, Doosung Park, Paul Arne Østvær","doi":"arxiv-2403.03056","DOIUrl":null,"url":null,"abstract":"We consider slice filtrations in logarithmic motivic homotopy theory. Our\nmain results establish conjectured compatibilities with the Beilinson, BMS, and\nHKR filtrations on (topological, log) Hochschild homology and related\ninvariants. In the case of perfect fields admitting resolution of\nsingularities, the motivic trace map is compatible with the slice and BMS\nfiltrations, yielding a natural morphism from the motivic Atiyah-Hirzerbruch\nspectral sequence to the BMS spectral sequence. Finally, we consider the Kummer\n\\'etale hypersheafification of logarithmic $K$-theory and show that its very\neffective slices compute Lichtenbaum \\'etale motivic cohomology.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.03056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider slice filtrations in logarithmic motivic homotopy theory. Our main results establish conjectured compatibilities with the Beilinson, BMS, and HKR filtrations on (topological, log) Hochschild homology and related invariants. In the case of perfect fields admitting resolution of singularities, the motivic trace map is compatible with the slice and BMS filtrations, yielding a natural morphism from the motivic Atiyah-Hirzerbruch spectral sequence to the BMS spectral sequence. Finally, we consider the Kummer \'etale hypersheafification of logarithmic $K$-theory and show that its very effective slices compute Lichtenbaum \'etale motivic cohomology.
关于对数切片过滤
我们考虑对数动机同调理论中的切片滤波。我们的主要结果建立了猜想中的与(拓扑,对数)霍希尔德同调及相关变量上的贝林森、BMS 和HKR filtrations 的兼容性。在完备场允许解析奇异性的情况下,动机迹图与切片和 BMS filtrations 兼容,从而产生了从动机 Atiyah-Hirzerbruch 光谱序列到 BMS 光谱序列的自然变形。最后,我们考虑了对数 $K$ 理论的 Kummer\'etale hypersheafification,并证明其非常有效切片计算 Lichtenbaum \'etale motivic cohomology。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信