Introducing machine-learning-based data fusion methods for analyzing multimodal data: An application of measuring trustworthiness of microenterprises

IF 6.5 1区 管理学 Q1 BUSINESS
Xueming Luo, Nan Jia, Erya Ouyang, Zheng Fang
{"title":"Introducing machine-learning-based data fusion methods for analyzing multimodal data: An application of measuring trustworthiness of microenterprises","authors":"Xueming Luo, Nan Jia, Erya Ouyang, Zheng Fang","doi":"10.1002/smj.3597","DOIUrl":null,"url":null,"abstract":"Multimodal data, comprising <i>interdependent</i> unstructured text, image, and audio data that collectively characterize the same source, with video being a prominent example, offer a wealth of information for strategy researchers. We emphasize the theoretical importance of capturing the interdependencies between different modalities when evaluating multimodal data. To automate the analysis of video data, we introduce advanced deep machine learning and data fusion methods that comprehensively account for all intra- and inter-modality interdependencies. Through an empirical demonstration focused on measuring the trustworthiness of grassroots sellers in live streaming commerce on Tik Tok, we highlight the crucial role of interpersonal interactions in the business success of microenterprises. We provide access to our data and algorithms to facilitate data fusion in strategy research that relies on multimodal data.","PeriodicalId":22023,"journal":{"name":"Strategic Management Journal","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strategic Management Journal","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1002/smj.3597","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

Abstract

Multimodal data, comprising interdependent unstructured text, image, and audio data that collectively characterize the same source, with video being a prominent example, offer a wealth of information for strategy researchers. We emphasize the theoretical importance of capturing the interdependencies between different modalities when evaluating multimodal data. To automate the analysis of video data, we introduce advanced deep machine learning and data fusion methods that comprehensively account for all intra- and inter-modality interdependencies. Through an empirical demonstration focused on measuring the trustworthiness of grassroots sellers in live streaming commerce on Tik Tok, we highlight the crucial role of interpersonal interactions in the business success of microenterprises. We provide access to our data and algorithms to facilitate data fusion in strategy research that relies on multimodal data.
引入基于机器学习的数据融合方法来分析多模态数据:测量微型企业可信度的应用
多模态数据由相互依存的非结构化文本、图像和音频数据组成,这些数据共同描述了同一来源的特征,视频就是一个突出的例子,为策略研究人员提供了丰富的信息。我们强调在评估多模态数据时捕捉不同模态之间相互依存关系的理论重要性。为了实现视频数据分析的自动化,我们引入了先进的深度机器学习和数据融合方法,全面考虑所有模态内和模态间的相互依存关系。我们通过实证演示,重点衡量了 Tik Tok 上直播流媒体商务中草根卖家的可信度,突出了人际互动在微型企业商业成功中的关键作用。我们提供数据和算法的访问权限,以促进依赖多模态数据的战略研究中的数据融合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.70
自引率
8.40%
发文量
109
期刊介绍: At the Strategic Management Journal, we are committed to publishing top-tier research that addresses key questions in the field of strategic management and captivates scholars in this area. Our publication welcomes manuscripts covering a wide range of topics, perspectives, and research methodologies. As a result, our editorial decisions truly embrace the diversity inherent in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信