Oka properties of complements of holomorphically convex sets | Annals of Mathematics

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yuta Kusakabe
{"title":"Oka properties of complements of holomorphically convex sets | Annals of Mathematics","authors":"Yuta Kusakabe","doi":"10.4007/annals.2024.199.2.7","DOIUrl":null,"url":null,"abstract":"<p>Our main theorem states that the complement of a compact holomorphically convex set in a Stein manifold with the density property is an Oka manifold. This gives a positive answer to the well-known long-standing problem in Oka theory whether the complement of a compact polynomially convex set in $\\mathbb{C}^{n}$ $(n&gt;1)$ is Oka. Furthermore, we obtain new examples of non-elliptic Oka manifolds which negatively answer Gromov’s question. The relative version of the main theorem is also proved. As an application, we show that the complement $\\mathbb{C}^{n}\\setminus \\mathbb{R}^{k}$ of a totally real affine subspace is Oka if $n&gt;1$ and $(n,k)\\neq (2,1),(2,2),(3,3)$.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2024.199.2.7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Our main theorem states that the complement of a compact holomorphically convex set in a Stein manifold with the density property is an Oka manifold. This gives a positive answer to the well-known long-standing problem in Oka theory whether the complement of a compact polynomially convex set in $\mathbb{C}^{n}$ $(n>1)$ is Oka. Furthermore, we obtain new examples of non-elliptic Oka manifolds which negatively answer Gromov’s question. The relative version of the main theorem is also proved. As an application, we show that the complement $\mathbb{C}^{n}\setminus \mathbb{R}^{k}$ of a totally real affine subspace is Oka if $n>1$ and $(n,k)\neq (2,1),(2,2),(3,3)$.

全形凸集补集的奥卡性质 | 数学年刊
我们的主要定理指出,具有密度性质的斯坦因流形中紧凑全形凸集的补集是奥卡流形。这给出了奥卡理论中长期存在的一个著名问题的正面答案:在 $\mathbb{C}^{n}$ (n>1)$ 中的紧凑多项式凸集的补集是否是奥卡。此外,我们还得到了非椭圆奥卡流形的新例子,它们否定地回答了格罗莫夫的问题。我们还证明了主定理的相对版本。作为应用,我们证明了如果 $n>1$ 和 $(n,k)\neq (2,1),(2,2),(3,3)$ 是完全实的仿射子空间的补集 $\mathbb{C}^{n}\setminus \mathbb{R}^{k}$,那么它就是奥卡流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信