On the generic part of the cohomology of non-compact unitary Shimura varieties | Annals of Mathematics

IF 5.7 1区 数学 Q1 MATHEMATICS
Ana Caraiani, Peter Scholze
{"title":"On the generic part of the cohomology of non-compact unitary Shimura varieties | Annals of Mathematics","authors":"Ana Caraiani, Peter Scholze","doi":"10.4007/annals.2024.199.2.1","DOIUrl":null,"url":null,"abstract":"<p>We prove that the generic part of the $\\mathrm{mod}\\, \\ell$ cohomology of Shimura varieties associated to quasi-split unitary groups of even dimension is concentrated above the middle degree, extending our previous work to a non-compact case. The result applies even to Eisenstein cohomology classes coming from the locally symmetric space of the general linear group, and has been used in joint work with Allen, Calegari, Gee, Helm, Le Hung, Newton, Taylor and Thorne to get good control on these classes and deduce potential automorphy theorems without any self-duality hypothesis. Our main geometric result is a computation of the fibers of the Hodge–Tate period map on compactified Shimura varieties, in terms of similarly compactified Igusa varieties.</p>","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":"19 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2024.199.2.1","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that the generic part of the $\mathrm{mod}\, \ell$ cohomology of Shimura varieties associated to quasi-split unitary groups of even dimension is concentrated above the middle degree, extending our previous work to a non-compact case. The result applies even to Eisenstein cohomology classes coming from the locally symmetric space of the general linear group, and has been used in joint work with Allen, Calegari, Gee, Helm, Le Hung, Newton, Taylor and Thorne to get good control on these classes and deduce potential automorphy theorems without any self-duality hypothesis. Our main geometric result is a computation of the fibers of the Hodge–Tate period map on compactified Shimura varieties, in terms of similarly compactified Igusa varieties.

论非紧凑单元式志村变种同调的泛函部分 | 数学年鉴
我们证明了与偶数维的准分裂单元群相关的志村(Shimura)变体的$\mathrm{mod}\, \ell$同调的一般部分集中在中度以上,从而将我们之前的工作扩展到了非紧凑情形。这一结果甚至适用于来自一般线性群局部对称空间的爱森斯坦同调类,并在与艾伦、卡列加利、吉、赫尔姆、勒洪、牛顿、泰勒和索恩的联合工作中被用来很好地控制这些类,并在没有任何自偶性假设的情况下推导出潜在的自动形态定理。我们的主要几何结果是计算紧凑化志村变上的霍奇-塔特周期图的纤维,用类似的紧凑化伊古萨变表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Mathematics
Annals of Mathematics 数学-数学
CiteScore
9.10
自引率
2.00%
发文量
29
审稿时长
12 months
期刊介绍: The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信