{"title":"On the generic part of the cohomology of non-compact unitary Shimura varieties | Annals of Mathematics","authors":"Ana Caraiani, Peter Scholze","doi":"10.4007/annals.2024.199.2.1","DOIUrl":null,"url":null,"abstract":"<p>We prove that the generic part of the $\\mathrm{mod}\\, \\ell$ cohomology of Shimura varieties associated to quasi-split unitary groups of even dimension is concentrated above the middle degree, extending our previous work to a non-compact case. The result applies even to Eisenstein cohomology classes coming from the locally symmetric space of the general linear group, and has been used in joint work with Allen, Calegari, Gee, Helm, Le Hung, Newton, Taylor and Thorne to get good control on these classes and deduce potential automorphy theorems without any self-duality hypothesis. Our main geometric result is a computation of the fibers of the Hodge–Tate period map on compactified Shimura varieties, in terms of similarly compactified Igusa varieties.</p>","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":"19 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2024.199.2.1","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove that the generic part of the $\mathrm{mod}\, \ell$ cohomology of Shimura varieties associated to quasi-split unitary groups of even dimension is concentrated above the middle degree, extending our previous work to a non-compact case. The result applies even to Eisenstein cohomology classes coming from the locally symmetric space of the general linear group, and has been used in joint work with Allen, Calegari, Gee, Helm, Le Hung, Newton, Taylor and Thorne to get good control on these classes and deduce potential automorphy theorems without any self-duality hypothesis. Our main geometric result is a computation of the fibers of the Hodge–Tate period map on compactified Shimura varieties, in terms of similarly compactified Igusa varieties.
期刊介绍:
The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.